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“Anything will give up its secrets if you love it enough...”

George Washington Carver

“If you have to kiss a lot of frogs to find a prince, find more frogs and kiss them faster

and faster.”

Ron Kohavi

“In theory, theory and practice are the same. In practice, they are not.”

Albert Einstein

“Life is like riding a bicycle. To keep your balance you must keep moving.”

Albert Einstein

“I think of life as a good book. The further you get into it, the more it begins to make

sense.”

Harold S. Kushner

“If you want to go fast, go alone. If you want to go far, go together”

African Proverb
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Abstract

Context: The more human beings depend on software systems, the more important role

that software security engineering must play to build secure software systems. Model-

Driven Security (MDS) emerged more than a decade ago as a specialised Model-Driven

Engineering (MDE) research area for engineering secure software systems. MDS is

promising but not mature yet. Our recent systematic literature review (SLR) has re-

vealed several current limitations and open issues in the state of the art of MDS research.

Objectives: This PhD work aims at addressing three of the main open issues in the

current state of the art of MDS research that are pointed out by the SLR. First, our SLR

shows that multiple security concerns need to be handled together more systematically.

Second, true Aspect-Oriented Modelling techniques for better ensuring the separation-

of-concern in MDS approaches could have been leveraged more extensively. Third,

complete tool chains based on integrated MDE techniques covering all the main stages

of the development cycle are emerging, but still very rare.

Methods: On one hand, we develop a full MDS framework with modularity based

on domain-specific modelling, model transformations, and model-based security testing.

This MDS framework can help us to deal with complex delegation mechanisms in access

control administration, from modelling till testing. On the other hand, we propose a

highly modular, reusable MDS solution based on a System of Security design Patterns

(SoSPa) and reusable aspect models to tackle multiple security concerns systematically.

Results: First, an extensive SLR has been conducted for revealing and analysing the

current state of the art of MDS research. Second, a full MDS framework focusing on

modularity has been proposed that integrates domain-specific modelling, model trans-

formations, and model-based security testing to support all the main stages of an MDS

development cycle. Third, we have developed a highly reusable, modular MDS approach

based on a System of Security design Patterns for handling multiple security concerns

together systematically. Finally, we have showed how our MDS approaches can be in-

tegrated in a full MDS framework, called MDS-MoRe, which could be the basis of a

complete tool chain for MDS development of secure systems.

Conclusion: In this thesis, integrated MDS methodologies with modularity and reusabil-

ity have been proposed for engineering secure software systems. This work has tackled

three main current open issues in MDS research revealed from an extensive SLR.

Keywords: Model-Driven Security, MDS, MDE, Aspect-Oriented Modelling, RAM,

DSL, Model Transformations, Model Composition, Systematic Review, Security Design

Patterns, Pattern Refinement, Security By Design, Security Testing.
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Nowadays, the security of software systems is getting more important than ever. With

the progress of the digital age, software systems play an essential role in our daily

lives. Indeed, software has become ubiquitous. We are relying on (mostly network-

connected) software in so many places from military systems, governmental systems,

banking systems, airlines systems, airplanes, trains, cars, to mobile phones on our hands.

Moreover, with the cyber-physical systems (CPSs) are becoming more popular, the

security of CPSs also plays a big role in the physical safety of human-beings around

these systems. However, the security of computer systems and networks cannot be

ensured by only enhancing network security and other perimeter solutions. It is also

essential for ensuring security by building better, secure software [149].

Building complex, secure software is very hard. Software systems are getting much more

complex, and seriously facing many more security challenges. As a consequence, software

systems are not always secure and reliable. Few days pass without new stories in the

newspapers about software vulnerabilities exploited by attackers. This would be only

the visible part of an iceberg. So far, more or less a thousand of software weaknesses have

been listed by the Common Weakness Enumeration (CWE)1 as the causes of software

vulnerabilities exploited by attackers. Thus, more innovative, sound methodologies for

developing modern secure software systems are vital.

1http://cwe.mitre.org/

1

http://cwe.mitre.org/
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The main technical motivation for this PhD work is showed in Section 1.1. Derived

from the motivation, in Section 1.2 our research objectives and questions are given.

Section 1.3 presents our research proposals to answer the research questions. The main

contributions of this thesis are listed in Section 1.4. Finally, Section 1.5 outlines the

main content of this thesis.

1.1 Motivation

With the progress of the digital age, software security engineering is becoming more

important than ever for building secure software systems. Technically, there could be

three main challenges for modern software security engineering. First, the complex-

ity of software systems and evolving security threats are irrefutably going up together.

In fact, taking into account security concerns while developing (already complex) sys-

tems makes the development process more stressful, error-prone, and difficult. Second,

although the complexity of systems being developed and maintained is continuously

increasing, economic pressure often reduces the development time and increases the fre-

quency of demanded modifications. The development process has to be more productive

and at the same time more systematic, reliable, especially for developing secure soft-

ware systems. The importance of security by design is gaining much more awareness by

both industry and academia, especially regarding the following third challenge. Third,

in many cases, security apparently was not systematically engineered into the software

systems but came as an after-thought. Security requirements are often scattered among

functional requirements. While security threats are becoming more dangerous, varied,

and evolving, security requirements must evolve accordingly, and often getting more

complex. Therefore, they can hardly be integrated properly into the traditional soft-

ware development process. As a consequence, many security weaknesses, which have

been exploited in practice, already made the headlines of the newspapers. All these

issues urge for more timely, innovative, and sound methodologies for better supporting

the development of reliably secure software systems.

Model-Driven Security (MDS) emerged more than a decade ago as a specialised Model-

Driven Engineering (MDE) approach for supporting the development of secure software

systems. MDE has been considered by some researchers as a solution to the handling of

complex and evolving software systems [38]. MDE leverages models and transformations

as main artefacts at every development stage. MDS is the common term of scientific

approaches for the model-driven development of secure systems. MDS specialises MDE

by taking into account security requirements with functional requirements, from very

beginning, and in every stage of the development process. MDS does not only take
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into consideration the notion of security by design but also many benefits of MDE such

as high-level abstraction and productivity. By modelling the desired system and ma-

nipulating models, the level of abstraction is higher than code-level that brings several

significant benefits, especially regarding security engineering. First, security concerns

are considered (modelled, manipulated) together with the business logic (and other

quality attributes like performance) from the very beginning, and throughout the MDS

development life cycle. In this way, security requirements are considered early, and

implemented more properly in the resulting secure system. Second, reasoning about

the desired systems at the model level would encourage the adoption of model-based

verification and validation methods. Model-based verification and validation methods

are getting more mature to ensure the correctness of the functional properties as well

as the quality properties such as the security properties of a system. Formal meth-

ods such as model checking and model-based analysis could be employed for verifying

security properties. Model-based security testing methods could be employed for vali-

dating the resulting secure systems (especially in where formal methods would not be

applicable). Moreover, using models at a higher-level than the final target platform

and independently from business functionality enables platform independence as well as

cross-platform interoperability. Third, MDS is productive, and supposedly less error-

prone than traditional development methods by leveraging on MDE automation provided

by automated model-to-model transformations (MTTs) and model-to-text transforma-

tions (MTTs, code generation). All these points show that MDS could be the solution

to all the challenges for developing modern secure systems mentioned before.

From the beginning of the 21st century until now, the very first MDS publications fol-

lowed by a considerable number of MDS research papers published have shown the great

attention of research community to this area, knowing that security getting more crucial.

MDS leverages the key advantages of MDE, in combination with security engineering

techniques, for tackling the challenges and advancing methodologies for developing se-

cure systems. MDS is promising but not yet mature. Our recent systematic literature

review (SLR) of MDS reveals the main limitations and open issues in the current state

of the art of MDS research [182], [183]. This PhD work aims at addressing three of the

current main open issues in MDS research. First, the SLR shows that multiple security

concerns have not been tackled systematically by the existing MDS studies. Develop-

ing modern secure systems must always address multiple security concerns together to

minimise different security leaks, and to make these systems resilient to different se-

curity attacks. Second, leveraging Aspect-Oriented Modelling (AOM) techniques for

better ensuring the separation-of-concern in MDS approaches is not popular. Enhanc-

ing separation-of-concern in the development process, between engineering security and

engineering main system functionalities, is important especially for developing complex
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software systems. Third, complete tools chains based on integrated MD methodologies

covering all the main stages of an MDS development cycle are emerging but still very

rare. As a model-driven software development methodology, MDS can only achieve its

full potential strengths and be more adoptable by industry if tool chains supporting the

MDS development processes are available. Addressing those three open issues could

advance the MDS research area.

1.2 Research Questions

This PhD work aims at advancing the current MDS research area by tackling (some of)

its main open issues in the state of the art. We formulate the central research questions

to be discoursed in this thesis as follows.

RQ: How to advance the current MDS research?

We decompose this central research question in more detailed research questions. To

advance the current MDS research, we first need to know its existing limitations or open

issues.

RQ0: What are the current limitations and open issues in the state of the art of MDS

research?

After identifying the current limitations and open issues, new MDS methodologies are

to be proposed to tackle them.

RQ1: How can the current limitations and open issues in the state of the art of MDS

research be addressed? In other words, what new MDS methodologies can be introduced

to address (some of) them?

More specifically, this PhD work particularly focuses on addressing three of the main

open issues mentioned in the previous section. Thus, RQ1 is detailed into three following

subquestions.

RQ1.1: How to address multiple security concerns more systematically?

RQ1.2: How to leverage AOM techniques to better enhance separation-of-concern in

MDS development processes?

RQ1.3: How to build a tool chain which is based on integrated MDE techniques covering

all the main stages of an MDS development cycle?

Moreover, we are interested in some specific key artefacts of MDS, namely security

modelling, composing, and testing in an MDS development cycle. We want to find out
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how MDE techniques (modelling, model composition, model-based testing) could be

leveraged in new MDS methodologies.

RQ2: How can MDE techniques such as modelling, model composition, model-based

testing be leveraged in new MDS methodologies for addressing the current limitations

and open issues of MDS research?

RQ2.1: How can modelling techniques be used for specifying multiple security concerns

systematically?

More specifically, how can multiple security concerns be modelled systematically, in

particular without any consideration of a target model i.e. the model in which the

security models will be composed?

RQ2.2: How can model composition techniques be employed for composing the security

models with the target system model?

How can (a subset of selected) security models be automatically, systematically com-

posed with the target model to obtain a new model of the system augmented of security

properties?

RQ2.3: How can model-based security testing techniques be applied to facilitate the

validation of the resulting secure systems?

How can the security enforced model be tested against security requirements, by con-

struction?

Thus, while finding the answers for RQ1 and its subquestions, we also construct these

answers to answer RQ2 and its subquestions. In other words, we design our research to

find the answers for both RQ1 and RQ2 at the same time.

1.3 Proposed Research Roadmap

To answer RQ0, at least a survey on the state of the art of MDS research must be

conducted. Normally, a survey can be conducted by reviewing the related work that

is well known in the field of MDS. More than a normal survey, we propose to conduct

our review in a systematic way which results in a systematic literature review (SLR)

of MDS. A SLR is more than a normal survey because it has a predefined review

protocol with clear selection criteria, evaluation criteria, and a systematic process of

extracting, synthesising, analysing data for answering the review questions. We follow

the common guideline for conducting SLR in Software Engineering by Kitchenham

[129] et al. Moreover, our SLR [183] is the first in the field of Software Engineering
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that combines a snowballing strategy [235] with database searching which results in an

extensive SLR of MDS.

To answer RQ1 and RQ2, we conduct our research in two main parts. On one hand,

we develop a full MDS framework with modularity based on domain-specific modelling

(DSM), model transformations (model-to-model transformation MMT, and model-to-

text transformation MTT), and model-based security testing. This MDS framework

allows us to deal with complex delegation mechanisms in access control administration,

from modelling till testing. By focusing on modularity, our MDS framework enables the

(component-based) secure systems to evolve dynamically.

On the other hand, we propose an MDS solution to tackle multiple security concerns

together systematically. Our MDS approach is based on a System of Security design

Patterns (SoSPa). In SoSPa, security design patterns are collected, specified as reusable

aspect models (RAM) [122] to form a coherent system of them that guides developers

in systematically addressing multiple security concerns at the same time. Specifically,

SoSPa consists of not only a catalog of security design patterns dealing with multiple

security concerns, but also interrelations among security patterns. With SoSPa, we do

promote not only modularity but also reusability in the MDS research.

Finally, we show how our MDS approaches can be integrated in a full MDS framework

with modularity and reusability, called MDS-MoRe, which can support all the main

stages of an MDS development cycle.

1.4 Contributions and Publications

The main contributions of this PhD work are as follows. They are grouped according to

the main points in the proposed research roadmap. The corresponding publications are

also indicated. The greater part of the work in each publication is directly attributed to

the PhD candidate (except [144] that is partly presented in Sections 2.2, 2.3 and briefly

in Appendix B).

1.4.1 An Extensive Systematic Review of MDS

First, an extensive SLR has been conducted for revealing and analysing the current state

of the art of MDS research (see Chapter 3). The main contributions of this work are:

(1) the detailed and condensed results on key MDS artefacts of all identified primary

MDS publications; (2) a diagnosis of the limitations and open issues of current MDS

research with suggestions for potential MDS research directions; (3) a classification of



www.manaraa.com

Chapter 1. Introduction 7

principal and emerging/less common MDS approaches; and 4) some trend analyses of

MDS research.

This work has been reported in a conference paper [182] and an extended journal paper

[183].

• Phu Hong Nguyen, Jacques Klein, Yves Le Traon, and Max E. Kramer. “A

Systematic Review of Model-Driven Security.” In the 20th Asia-Pacific Software

Engineering Conference (APSEC, 2013), vol. 1, pp. 432-441. IEEE, 2013. [182]

• Phu Hong Nguyen, Max E. Kramer, Jacques Klein, and Yves Le Traon. “An

Extensive Systematic Review on the Model-Driven Development of Secure Sys-

tems.” In Information and Software Technology, 2015. [183]

Additionally, a detailed analysis on some of the most popular MDS approaches has been

performed [144]. This work complements for the SLR because it provides a thorough

analysis on some specific well-known MDS approaches revealed in the SLR (see Ap-

pendix B). The main contributions of this work are: (1) a comprehensive taxonomy for

MDS; and (2) a thorough evaluation and discussion of some of today’s most relevant

MDS approaches. We have published this work in a book chapter [144].

• Levi Lucio, Qin Zhang, Phu Hong Nguyen, Moussa Amrani, Jacques Klein,

Hans Vangheluwe, and Yves Le Traon. “Advances in Model-Driven Security.”

Advances in Computers 93 (2014): 103-152. [144]

1.4.2 MDS with Modularity

A full MDS framework with modularity has been proposed that integrates domain-

specific modelling (DSM), model transformations (model-to-model transformation MMT,

and model-to-text transformation MTT), and model-based security testing to support

all the main stages of an MDS development cycle (see Chapter 5). The main contribu-

tions of this work are: (1) DSLs for separately modelling access control, delegation and

business logic as separate concerns; (2) security enforcement by leveraging automated

model transformation/composition (from security model to architecture model); (3) a

mutation analysis approach to test the security policy enforcement.

The results of this work have been published in a conference paper [190], an extended

journal paper [184], and a workshop paper [191].
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• Phu Hong Nguyen, Gregory Nain, Jacques Klein, Tejeddine Mouelhi, and Yves

Le Traon. “Model-driven adaptive delegation.” In Proceedings of the 12th an-

nual international conference on Aspect-oriented software development, pp. 61-72.

ACM, 2013. [190]

• Phu Hong Nguyen, Gregory Nain, Jacques Klein, Tejeddine Mouelhi, and Yves

Le Traon. “Modularity and Dynamic Adaptation of Flexibly Secure Systems:

Model-Driven Adaptive Delegation in Access Control Management.” In Transac-

tions on Aspect-Oriented Software Development XI, pp. 109-144. Springer Berlin

Heidelberg, 2014. [184]

• Phu Hong Nguyen, Mike Papadakis, and Iram Rubab. “Testing Delegation

Policy Enforcement via Mutation Analysis.” In Software Testing, Verification and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on,

pp. 34-42. IEEE, 2013. [191]

1.4.3 MDS with Reusability

We propose an MDS approach based on a System of Security design Patterns (SoSPa)

for addressing multiple security concerns together systematically (see Chapter 6). The

main contributions of this work are: (1) hierarchical reusable aspect models (RAM)

with a refinement process for specifying security design patterns from abstract level till

detailed design level; (2) explicitly specified interrelations among security design pat-

terns for systematically dealing with multiple security concerns; (3) an MDS framework

supporting secure systems development based on SoSPa.

The results of this work were published in [181] and [185]. In this work, our approach

has provided not only the modularity but also a highly reusable solution in MDS.

• Phu Hong Nguyen, Jacques Klein, and Yves Le Traon. “Model-Driven Security

with A System of Aspect-Oriented Security Design Patterns.” In 2nd Workshop on

View-Based, Aspect-Oriented and Orthographic Software Modelling. 2014. [181]

• Phu Hong Nguyen, Koen Yskout, Thomas Heyman, Jacques Klein, Riccardo

Scandariato, and Yves Le Traon. “SoSPa: A System of Security Design Patterns

for Systematically Engineering Secure Systems.” In ACM/IEEE 18th International

Conference on Model Driven Engineering Languages and Systems. 2015. [185]

Finally, we showed how our MDS approaches can be integrated in a full MDS frame-

work, called MDS-MoRe, which could be the basis for building complete tool chain(s)

supporting the MDS development of secure systems (see Chapter 4).
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1.5 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 provides background concepts and terminologies which are used in this thesis.

Specifically, brief introductions to software security engineering, model-driven software

engineering, model-driven security, and model-based security testing are given. An

informal introduction to MDS can be found in Appendix A.

Chapters 3 to 6 contain the main contributions of this thesis. In Chapter 3, the current

state of the art of MDS is analysed via an extensive systematic literature review (SLR)

of MDS and a thorough survey on advances in MDS. Our SLR is the first in the field

of Software Engineering that combines a snowballing strategy with database searching.

The results show the identified primary MDS studies, the overall status of the key

artefacts of MDS, and some trends analysis of MDS research. Based on the insights

from our review results, we suggest some potential MDS research directions that have

been partly taken in this thesis. Additionally, our survey on advances in MDS gives

more details on some of the most well-known MDS studies (see Appendix B).

Chapter 4 introduces our unified approach, MDS-MoRe, for model-driven development

of secure systems focusing on modularity and reusability. The architecture of MDS-

MoRe framework and the processes in the framework are presented in this chapter.

Chapter 5 presents a full MDS approach with modularity, from modelling to testing,

for developing secure systems enabling dynamic adaptation. Our proposed modular

model-driven framework can be used for 1) specifying access control, delegation and

business logic as separate concerns; 2) dynamically enforcing/weaving access control

policies with various delegation features into security-critical systems; and 3) providing

a flexibly dynamic adaptation strategy. With modularity and dynamic adaptation, this

approach allows modern secure systems to adapt and evolve at runtime. More details

on platform-dependent implementations can be found in Appendix C. Besides, we also

propose to adopt mutation analysis in testing the security of the constructed systems.

A set of mutation operators is used to introduce mutants into security policies and thus,

enable mutation testing.

Chapter 6 describes our MDS approach for enhancing not only modularity but also

reusability based on a System of Security design Patterns (SoSPa). In SoSPa, security

design patterns are collected, specified as reusable aspect models to form a coherent

system of them that guides developers in systematically addressing multiple security

concerns. SoSPa consists of not only interrelated security design patterns but also a

refinement process towards their application. After reading Chapter 6, readers interested
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in more details of our unified System of Security design Patterns can find more in

Appendix D.

Finally, Chapter 7 summarises and discusses the approaches proposed in the previous

chapters for the model-driven development of secure systems. Based on the discussion,

possible directions for future work are given.

The recommended flow for reading this thesis is given in Fig. 1.1.
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This chapter provides the background concepts used in this thesis. The research domain

of this PhD work is MDS that lies in the intersection of software security engineering and

model-driven software engineering. The key concepts of software security engineering are

given in Section 2.1. Then, we present in Section 2.2 the main artefacts of model-driven

software engineering. Section 2.3 shows a brief history of MDS. Some model-based

security testing concepts are given in Section 2.4.

2.1 Software Security Engineering

In this thesis, our MDS approaches should be understood as software security engineer-

ing processes. These processes are for specifying, designing, implementing, and testing

software for security to identify and solve security problems in the software itself. The

most common concepts of software security engineering are given in this section. A short

introduction of security patterns is also presented.

2.1.1 Software Security Terms

Several key terms in the domain of software security from [149] are recalled as follows.

Software security is the ability of software to resist, tolerate, and recover from events

11
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that intentionally threaten its dependability with the preservation of availability, integrity,

and confidentiality of information.

Secure software is software that is resistant to intentional attack as well as uninten-

tional failures, defects, and accidents.

Security engineering is about building systems to remain dependable in the face of

malice, error, or mischance. As a discipline, it focuses on the tools, processes, and

methods needed to design, implement, and test complete systems, and to adapt existing

systems as their environments evolve [18].

Asset is “anything that has value to the organisation” and which therefore requires pro-

tection.

Stakeholder is an organisation or person who places a particular value on assets.

Security objective is a statement of intent to counter threats and satisfy identified

security needs.

Threat a potential violation of security [40]

Attack is an action that could cause a violation of security to occur.

Attacker is an entity that carries out attacks.

Vulnerability is a weakness of an asset or control, which may be exploited by a threat.

Countermeasure is an action taken to protect an asset against threats and attacks.

Risk is the combination of the probability of an event and its consequence.

2.1.2 Security Concerns

Software security is often associated with the three globally accepted security concerns

or properties, namely Confidentiality, Integrity, and Availability (CIA). CIA concerns

are recalled from [40] as follows.

Confidentiality is the concealment of information or resources. Unauthorised parties

are prevented from knowing the information or resources, even from being aware of their

existence.

Integrity refers to the trustworthiness of data or resources, and it is usually phrased in

terms of preventing improper or unauthorised change.

Availability refers to the ability to use the information or resource desired.

Besides CIA, accountability is another security concern that is discussed in this thesis.

Accountability refers to the ability to keep tracks of who did what and when.
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2.1.3 The STRIDE Threat Model

For designing secure software, the STRIDE threat model that consists of six threat

categories has been used [140]. These six threat categories could be considered as the

refinement of the security concerns mentioned before.

Spoofing identity: Attacker successfully pretends to be an authorised user that he is

not.

Tampering with data: Attacker tampers with data by modifying, deleting, adding,

or reordering data.

Repudiation: No proof exists to prove that a certain action has been performed.

Information disclosure: An unauthorised user got access to information that should

not be exposed to unauthorised user.

Denial of service: Attacker destroys the usefulness of the system for valid users.

Elevation of privilege: Attacker or unprivileged user gets more access to assets in the

system than they are authorised for.

2.1.4 Security Solutions

The security solutions for addressing the STRIDE or the security concerns are briefly

categorised as follows.

Authentication as recalled from [40] is the binding of an identity to a principal. The

external entity must provide information to enable the system to confirm its identity.

This information comes from one (or more) of the following (called credentials).

1. What the entity knows (such as passwords or secret information)

2. What the entity has (such as a badge or card)

3. What the entity is (such as fingerprints or retinal characteristics)

4. Where the entity is (such as in front of a particular terminal)

The authentication process consists of obtaining the authentication information from an

entity, analysing the data, and determining if it is associated with that entity. This

means that the computer must store some information about the entity. It also suggests
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that mechanisms for managing the data are required. In other words, building an au-

thentication solution must consider where the credentials are stored and updated, how

they are protected, and how accounts are created/renewed/cancelled/locked.

Authorisation or Access Control is for controlling access to specific resources. Nor-

mally, an entity must be authenticated first to access to a system. Then the authen-

ticated entity’s access to specific resources in the system is controlled by using some

model of access control based on authorisation rules/permissions. Building an autho-

risation solution must consider where the permissions are stored and protected, how

management and lifecycle of the permissions are implemented.

Cryptography is for confidentiality by encrypting readable data (plain text) into an un-

readable format (cipher text) that can be understood only by the intended recipient after

decryption, the inverse function that makes the encrypted information readable again.

[72]. Cryptography is also for integrity and authenticity by preventing alterations (us-

ing keyed cryptography hash, e.g. MD5, SHA2), by preventing removal/insertion (using

sequence number in message authentication code), and by verifying the origin of a dig-

ital document (using digital signature). There are two types of encryption: symmetric

and asymmetric. In symmetric encryption a common key is used for both encryption

and decryption. In asymmetric encryption a public/private key pair is used for encryp-

tion/decryption: the sender encrypts the information using the receiver’s public key,

while the receiver uses their private key to decrypt the ciphered text [72]. Building a

cryptography solution must consider the management of certificates for public keys,

where the keys are stored, how they are protected, and how they are distributed.

Auditing is an a posteriori technique for determining security violations: logging (record-

ing of system events and actions) and auditing (analysis of these records). Auditing plays

a major role in detection of security violations and in postmortem analysis to determine

precisely what happened and how [40]. Building an auditing solution must make sure all

interesting actions are logged with enough detail, and note that audit trails (logs) can

be target of attacks. Hence, they need to be maintained in a trusted manner.

Monitoring and intrusion detection is for misuse detection by comparing to a model

of attack, for anomaly detection by comparing to a model of normal behaviour. Mon-

itoring can happen at several levels, e.g. network activity (TCP flows), user activity

(login/logout, servicer invocations), and service activity (execution flows). Building a

monitoring solution must consider where the sensors are located, where the events are

stored, how the events are aggregated, and how status and incidents are reported.
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2.1.5 Security Patterns

Designing secure software requires experience and expertise. One way to get both could

be leveraging security patterns. Software design patterns [84] have been very popular

and successful in many areas of software development. Security patterns are patterns

that provide domain-independent, time-tested security knowledge and expertise. They

are supposed to be reusable bricks upon which sound and secure software can be built.

From security engineering’s point of view, one of the best practices is the use of security

patterns to guide security at each stage of the development process [211]. According

to Schumacher et al. [211], a security pattern describes a particular recurring security

problem that arises in specific contexts and presents a well-proven generic scheme for

its solution. Patterns are applied in the different architectural levels of the system to

realise security mechanisms. Security patterns typically do not exist in isolation because

applying one solely can not make a system secure to different threats. So far, catalogs

of security patterns are the most accessible, well organised, documented resources of

different security solutions for different security concerns, e.g. [72, 220, 211].

A higher organisation of security patterns than catalogs is called a system of security

patterns. Related patterns should be highly integrated for working together to address

more complex security problems in the real world. A system of security design patterns

is a collection of patterns for designing secure systems, together with guidelines for their

implementation, combination, and practical use in secure systems development. We

develop such a system of security design patterns in Chapter 6.

2.2 Model Driven Engineering

This section first recalls the key ideas behind Model-Driven Software Engineering or

Model-Driven Engineering (MDE) [144]. MDE has been introduced as a better method-

ological approach to software engineering than using general purpose programming lan-

guages (Gpls). Two of the main advantages of MDE are improving the productivity

in engineering software and the quality of software. This is because the engineering

methodology of MDE is at a higher level of abstraction than the methodology of using

Gpls. MDE follows the irrefutable trend of software engineering in raising the level of

abstraction. This can be seen in the introduction of third-generation programming lan-

guages (3GLs or Gpls) that are much more machine independent. Before 3GLs, second

generation programming languages, a.k.a. assembly languages, are machine-dependent.

MDE supports building and using the abstractions of the processes and the concepts in

engineering software that could be easier to understand, verify, and simulate than using
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Figure 2.1: The Model Transformation Process adapted from [221]

Gpls. The reasoning behind this claim is that those abstractions are close to the do-

main being addressed by the engineers, whereas Gpls are built essentially to manipulate

computer architecture concepts. In other words, MDE allows engineering software in a

more intuitive way, close to the problem domain that supposedly could provide better

(domain-specific) designs and enable automation to derive computer programs (or the

implementation by Gpls) from domain-specific designs.

The remainder of this section presents the key concepts and artefacts of MDE as well

as the main approaches following the MDE paradigm.

2.2.1 Models, Metamodels and Model Transformations

Models are the central artefact in MDE. A model in the software engineering world is

an abstraction of anything one wishes to capture for engineering purposes. Abstraction

means that a model contains only the details that are essential at a given stage of

the engineering cycle. Other details are left out at this given stage. The reason is

to better focus on engineering the essential concepts at hand at a given stage. In the

MDE world, a model is defined by using a given modelling language. Such a language

(a.k.a. formalism) is called metamodel that is used to specify all different instantiations

(models) of computational artefacts that share the same abstraction concerns.
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Besides models, model transformations can be considered as the heart and soul of MDS

[212]. Model transformations are developed for manipulating models according to the

different purposes in different stages of the engineering cycle. In other words, model

transformations drive the engineering process of MDE. For example, model transfor-

mation(s) can be used to transform some (model of) user requirements into models for

analysis purposes. Model transformation(s) can be used to transform a UML sequence

diagram into a formalism for an automated verification by a formal verification tool.

Model transformation(s) can also be used to transform models into code. Model trans-

formation languages/engines such as Atl [20], Kermeta [176] or Qvt [67] have been

developed to provide stable platforms for writing and executing model transformations.

2.2.2 Model-Driven Engineering Approaches

In this section, we briefly summarise the main approaches following the MDE paradigm.

First, Model-Driven Architecture, which is an early OMG standard generative approach,

is presented. Next, we show why the Domain-Specific Modelling approach proposes

defining a language for each different domain that contributes to an application. Then,

Multi-Paradigm Modelling, a generalisation of Domain-Specific Modelling Languages,

is discussed to show how the different models of computation interact. Last but not

least, we present the Aspect-Oriented Modelling approach that studies more precisely

how different models can be combined or composed.

2.2.2.1 Model-Driven Architecture

In 2001, OMG launched a proposal on Model-Driven Architecture (MDA) to help stan-

dardise model definitions, and favour model exchanges and compatibility. We recall in

[144] the following points of MDA according to [132]:

• It builds on the UML, an already standardised and well-accepted notation, already

widely used in Object-Oriented systems. In an effort to harmonise notations and

clean the UML’s internal structure, Meta-Object Facility (MOF) was proposed

for coping with the plethora of model definitions and languages;

• It proposes a pyramidal construction of models as can be observed in Fig.2.2:

artefacts populating the level M0 represents the actual system; those in the M1

level model the M0 ones; artefacts belonging to the M2 level are metamodels,

allowing the definition of M1 models; and finally, the unique artefact at the M3

level is MOF itself, considered as meta-circularly defined as a model itself;
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Figure 2.2: The MDA Pyramid [adapted from 223]

• Along with this pyramid, MDA enforces a particular vision of software systems

development seen as a process with the following steps (Fig. 2.3): requirements

are collected in a Computation Independent Model (Cim), independently of how

the system will be ultimately implemented; then a Platform Independent Model

(PIM) describes the design and analysis of all system parts, independently of any

technical considerations about the final execution platforms and their embedded

technologies; a PIM is then refined into a Platform Specific Model (PSM) and

combined with a Platform Description Model (PDM) to finally reach code that

will run on a specific platform.

MDA promotes a vertical separation of concerns [144]. This means that the system is

designed at a high level, without any considerations about the target platform speci-

ficities. These specificities are then integrated by automated generators to produce

code compliant with each platform. This methodology directly inspired several MDS

approaches for enforcing security concerns within software applications.

2.2.2.2 Domain Specific Modelling

The “divide-and-conquer” approach is popular to tackle the increasing complexity of

current software systems. In this way, the design activity is divided into several areas of

concern and focusing on specific aspects of the system. One of the main goals is to make

system specifications closer to the domain’s experts, which facilitates controlling the

quality of the produced artefacts. It is even possible to allow domain experts to create
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Figure 2.3: Model-Driven Architecture Overview from [144]

the computable system specifications in their own domain “language”. Therefore, the

abstraction level of the produced specifications has been raised with the immediate bene-

fit of increasing the level of confidence attached to them. Within MDE, Domain-Specific

Modelling (DSM) is a key methodology for the effective and successful specification of

such systems. This methodology makes systematic use of Domain-Specific Modelling

Languages (DSMLs, or DSLs for short) to represent the various artefacts of a system

as models. DSLs allow designers’ efforts to be focused on the variable parts of the design

while the underlying machinery takes care of the repetitive, error-prone, and well-known

processes of manipulating design models such as code generation. In MDS, DSLs are

commonly used for better capturing the specific semantics of security mechanisms.

As part of MDE, DSM also aims at improving the productivity of the development

process and the quality of the produced artefacts. A well-known white paper on the

subject from [155] presents anecdotal evidence that DSLs can boost productivity up to

10 times, based on experiences with developing operating systems for cell phones for

NokiaTM and LucentTM . These encouraging results pushed the scientific community

to invest further in this topic and build environments to facilitate the construction,

management, and maintenance of DSLs. This effort has been materialised with concrete

frameworks: Emf and Gmf [162], AToM3 [137] or Microsoft’sTM DSL Tools [60], among

others.
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2.2.2.3 Multi-Paradigm Modeling

Multi-Paradigm Modelling (MPM), as introduced by [168], is a perspective on software

development in which models should be built at the right level of abstraction and with

the right type of models regarding their purpose. Automatic model transformations can

be used to manipulate models from one representation to another during the model-

driven development of a system. In this case it is thus desirable to consider modelling

as an activity that spans different models, expressed in different paradigms. The main

claimed advantage of such an approach is that the software engineer can benefit from

the already existing multitude of languages and associated tools for describing and au-

tomating software development activities. The task of transforming data in between

formalisms is delegated to specialised machinery such as model transformation engines.

For example in a MPM approach, a UML state chart model representing the abstract

behaviour of a software system is used to generate code for execution on a given plat-

form. The same state chart can also be transformed into a formalism that is amenable

for verification. Another possible advantage of this perspective on software development

is the independence on implementation platform. Models in a MPM approach can be

used for different purposes and are platform-independent. Therefore, toolsets for imple-

menting a particular model-driven software development methodology become flexible.

Formalisms and transformations may be potentially plugged in and out of a development

toolset given their explicit representation.

2.2.2.4 Aspect-Oriented Modelling

Aspect-Oriented Modelling (AOM) is the key in the mix of MDD and Aspect-Oriented

Software Development (AOSD). AOSD truly follows the well-known principle of “divide-

and-conquer”. More specifically, AOSD aims at addressing crosscutting concerns (such

as security, synchronisation, concurrency, persistence, performance, among others) of

a system. By separately, specifically dealing with each crosscutting concern, the com-

plexity in developing system could be reduced much more than when addressing all

crosscutting concerns together with the system concurrently. Therefore, AOSD pro-

vides means for the systematic identification, separation, representation and composi-

tion of crosscutting concerns. The modularisation of crosscutting concerns in AOSD

had been popularised at code level by the AspectJ programming language [121]. How-

ever, together with the emergence of MDE, handling crosscutting concerns earlier in the

software life-cycle, for instance at design time [57], or during requirements analysis [100]

has become more popular. Crosscutting concerns are encapsulated in separate modules,

called aspects. Once the different aspects are specified, they can be assembled to build
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aspect Locatable

structural view

Pointcut Advice

|Locatable

+ |Locatable create(.., Location myLocation, ..)
+ Location getLocation()
+ updateLocation(Location location)
+ int travelTime(Location destination)

- Location myLocation
|Locatable

Any

state view |Locatable

Any

getLocation

Default Instantiation
Any→ *updateLocation

travelTime

Figure 2.4: Aspect Locatable [124]

the whole application. This mechanism of integration is called weaving. There exist

different techniques to represent, compose or weave aspects at model level, e.g. [58, 82,

79, 131, 234, 165, 134].

One of the most complete, reusable AOM methodologies with tools support for multi-

view modelling is Reusable Aspect Model (RAM) [123, 122, 7, 124]. RAM [122] is

an aspect-oriented multi-view modelling approach with tool support for aspect-oriented

design of complex systems. In RAM, any concern or functionality that is reusable can

be modelled using class, sequence, and state diagrams in an aspect (RAM) model.

A RAM model can be (re)used within other models via its clearly defined usage and

customisation interfaces [13]. The usage interface of a RAM model consists of all the

public attributes and methods of the class diagrams in the model. The customisation

interface of a RAM model consists of all the parameterised model elements (marked with

a vertical bar |) of the partially defined classes and methods in the model. For example,

Fig. 2.4 shows Locatable aspect having the parameterised class namely |Locatable. A

RAM model can be (re)used by composing the parameterised model elements with the

model elements of other models. A RAM model can also reuse other RAM models in

a hierarchical way. RAM weaver [7] is used to flatten aspect hierarchies to create the

composed design model.

In MDS, Aspect-Oriented Modelling (AOM) techniques are naturally suitable to be

leveraged. By using AOM, security solution models can be developed relatively sepa-

rated from the business model (or target model) of a system. Then, model composition

techniques can be used to compose the security solution models into the target model

of a system.
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MBEMDEMDDMDS

Figure 2.5: Relations among MBE, MDE, MDD and MDS.

2.3 Model-Driven Security

Model-Driven Security (MDS) can be seen as a specialisation of MDE for supporting

the development of security-critical applications. MDS makes use of the conceptual

approach of MDE as well as its associated techniques and tools to propose methods

for the engineering of secure applications. More specifically, (security-oriented) models

are the central artefacts in every MDS approach. Besides being used to describe the

system’s business logic, they are used extensively to capture security concerns. Models

allow the introduction and enforcement of security in the application being built. In

this section, we start by mentioning several early MDS approaches in which (security-

oriented) models had become a central artefact like in an MDE context. We then present

a view on the position of MDS research regarding MDE and other related Model-Driven

methodologies.

2.3.1 A Brief History of MDS

In [144], we briefly review several contributions that provided early first ideas and def-

initions for MDS in the context of MDE. It is important to note that, from the early

beginning of MDS, the approaches used models to focus on capturing the domain and

the security properties, abstracting away from implementation details. The use of mod-

els in advanced (formal) verification and validation techniques was already promoted.

Two well known UML-based approaches that have been discussed are UMLsec [111,

109, 110], SecureUML [143, 30, 26]. Two other approaches that promoted the use of

DSLs are also discussed: [145] and [136]. More details on this discussion can be found

in [144].

2.3.2 MDS regarding MBE, MDE, MDD

Numerous security engineering techniques exist which support the development of secure

systems. There are also many MDE techniques for the development and maintenance of
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software systems in general. Our research focus, however, is only on MDE approaches

that are specifically customised for supporting the development of secure systems. As we

already mentioned, MDS can be considered a subset of MDE. We will now clarify the

relations between MDE, Model-Based Engineering (MBE), Model-Driven Development

(MDD), security engineering, and MDS. Regarding MBE, MDE, and MDD, we agree

with the point of view presented by Brambilla et al. [48, p. 9]. Specifically, MBE can

be used for development processes in which models may not necessarily be the central

artefacts for development. E.g., if models are only used for documentation purposes and

not in automated transformations. MDE can be seen as a subset of MBE in which

models have to be the key artefacts throughout the development, i.e. models “drive”

the process in every step: All development, evolution, and migration tasks have to be

influenced by explicit models. MDD can be considered a subset of MDE that only

denotes development activities with models as the primary artefact. Normally, model-

to-model transformations (MMTs) or model-to-text transformations (MTTs) are used

in MDD to obtain other models or to generate code. Thus, MDS refers to all research

approaches that focus on a MDD process for building secure systems. Figure 2.5 depicts

these subset relations.

2.4 Model-Based (Security) Testing & Mutation Analysis

Because we leverage model-based testing and mutation analysis in our MDS approach,

these two methodologies are shortly introduced in this section.

2.4.1 Model-Based (Security) Testing

Model-based testing (MBT) is a variant of testing that relies on the behavior models of a

system under test (SUT) and/or its environment to (automatically) derive test cases for

the system [226]. Therefore, MBT allows the tests derivation process to be structured,

reproducible, programmable, and documented.

A MBT approach in which the security requirements of a SUT are the main focus for

testing is called model-based security testing (MBST) [71]. MBST is an important part

of MDS because the verification and validation of any (newly built) secure systems are

essential. In MDS, MBST can be integrated logically because of its “model-based”

nature. Only that we need to introduce specific security testing requirements into MBT

to identify vulnerabilities and ensure security functionality.
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2.4.2 Mutation Analysis

Mutation analysis [64, 93] is a well established technique supporting various software

development activities like testing [104] and debugging [196]. It operates by defining

mutation operators to introduce artificial defects called mutants into the artefacts of

the program under investigation [193]. Its requirement is to design test cases capable

of revealing these defects. The utilised test cases are examined to reveal the introduced

mutants. A mutant is “killed” if it is detected by a test case. The quality of testing

process can be measured by the ratio of the killed mutants per the totally introduced

mutants (called mutation score). Mutation score can help to work on improving the test

cases. Researchers have shown that mutants despite being artificially introduced behave

quite similarly to real faults [19]. Thus, the benefits of their use are evident. Section 5.7

presents how we leveraged mutation analysis for security testing.
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Over a decade of research on MDS has resulted in a large number of MDS studies

and publications. To provide a detailed analysis of the state of the art in MDS, a

systematic literature review (SLR) is essential. This chapter presents how we conducted

an extensive SLR on MDS, and the results.

3.1 Introduction

For more than a decade since MDS first appeared, a considerable number of MDS

publications has shown a great attention of the research community to this area. The

MDS approaches vary greatly in many artefacts such as the security concerns addressed,

the modelling techniques used, the model transformations techniques used, the targeted

application domains, or the evaluation methods used. To provide a detailed state of the

art in MDS, a full systematic literature review (SLR) is needed.

25
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So far, a full SLR on MDS does not exist. Surveys on MDS approaches ([118, 28,

144, 227]) could provide in-depth analyses of some well-known MDS approaches, but do

not summarise the complete research area systematically. [103] could be closer to our

work, but has several limitations in terms of scope and methodology. E.g., it missed

many important primary MDS approaches such as UMLsec [107], and aspect-oriented

approaches. In contrast, our SLR is performed in both width and depth of MDS re-

search that reveals an extensive set of primary MDS studies. Furthermore, our review

provides a detailed overview on the key artefacts of every MDS approach such as used

modelling techniques, considered security concerns, employment of model transforma-

tions, verification or validation methods, and targeted application domains. Finally, we

present trend analyses for MDS publications, and for the addressed security concerns

and other key artefacts.

The main contributions of this chapter are: 1) detailed and condensed results on key

MDS artefacts of all identified primary MDS publications; 2) a diagnosis of limitations

and open issues of current MDS approaches with suggestions for potential MDS research

directions; 3) a classification of principal and emerging/less common MDS approaches;

and 4) trend analyses.

The remainder of this chapter is structured as follows. Section 3.2 provides main back-

ground concepts and definitions. The objective of this SLR, its research questions,

search strategy, and selection process are described in Section 3.3. In Section 3.4, we

present our evaluation criteria and data extraction strategy. Section 3.5 shows the main

results of our review. Threats to validity are discussed in Section 3.6. In Section 3.7,

related work is presented. Section 3.8 concludes the chapter by summarising the results,

highlighting open issues, and giving some thoughts on future work.

3.2 Systematic Literature Review and Snowballing

SLR is a means for thoroughly answering a particular research question, or examining a

particular research topic area, or phenomenon of interest, by systematically identifying,

evaluating, and interpreting all available relevant research [129]. Well-known guidelines

for conducting SLRs in software engineering were provided by Kitchenham [129] and

Biolchini et al. [39]. All individual studies that are identified as relevant research con-

tributing to a SLR are called primary studies [129]. In this chapter, based on the

numbers of publications and citations of primary MDS studies, we further classify them

into principal MDS studies, and less common or emerging MDS studies.
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In a SLR, it is crucial to transparently and correctly identify as many relevant research

papers in the focus of the review as possible. The search strategy is key to the identifi-

cation of primary studies and ultimately to the actual outcome of the review [235]. The

guidelines by Kitchenham [129] for SLRs in software engineering suggest to start with a

database search that is based on a search string and also called automatic search in this

chapter. They also recommend complementary searches, e.g. a manual search on jour-

nals and conferences proceedings, references lists, and publications lists of researchers

in the field.

Both automatic search and manual search have limitations [235]: The former depends

on the selection of databases, on database interfaces and their limitations, on the con-

struction of search strings, and on the identification of synonyms. The latter depends on

the selection of research outlets, e.g. journals or conferences, and cannot be exhaustive.

Therefore Wohlin et al. [235] proposed the snowballing search strategy as a first step

to systematic literature studies. The key actions of the snowballing search strategy are:

1) identify a starting set of primary papers; 2) identify further primary papers using

the reference lists of each primary paper (backward snowballing); 3) identify further

primary papers that cite the primary papers (forward snowballing); 4) repeat steps 2

and 3 until no new primary papers are found. We are convinced, that the snowballing

search strategy complements the automatic and manual search strategies of Kitchenham

[129]. In our SLR we defined and performed a snowballing search strategy that builds

on the set of primary papers found in automatic and manual searches. Details of our

search strategy are presented in Section 3.3.

3.3 Our systematic review method

Our SLR method is based on the guidelines of Kitchenham [129], and the snowballing

strategy of Wohlin et al. [235]. We presented the motivation for our review in Sec-

tion 3.1 and state our research questions in the next section. Based on these research

questions, we developed a review protocol, which was evaluated before conducting the

review. Figure 3.1 shows an overview of our SLR process. We combined an automated

database search (Section 3.3.2.2), a manual search in relevant journals and conference

proceedings (Section 3.3.2.3), and a snowballing strategy (Section 3.3.2.4) to identify

as many primary MDS papers as possible. For our predefined protocol we clarify the

selection criteria (Section 3.3.3) to reduce a possible bias in the selection process (Sec-

tion 3.3.4). The quality assessment, data extraction and synthesis of the primary MDS

studies are based on a fixed set of evaluation criteria (Section 3.4). The results obtained
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from classifying, synthesising, analysing, and comparing the data extracted from the

primary MDS studies are presented in Section 3.5.

3.3.1 Research Questions

This SLR aims to answer the following research questions:

RQ1: How do existing MDS approaches support the development of secure

systems?

This question is further divided into the following subquestions:

RQ1.1: What kinds of security concerns are addressed and what security mechanisms

are used by these MDS approaches?

RQ1.2 : How do the MDS approaches specify or model security requirements together

with functional requirements? Is there any tool that supports the modelling process?

RQ1.3 : How are model-to-model transformations (MMTs) used and which MMT en-

gines are used? Is there any tool support for the transformation process?

RQ1.4 : How are model-to-text transformations (MTTs) used to generate code, includ-

ing security infrastructure and configuration? Which tools are used for the generation

process?

RQ1.5 : Which methods were used to evaluate the approaches? What results have been

obtained?

RQ1.6 : Which application domains are addressed by the MDS approaches?

RQ2 : What are current limitations of existing MDS research?

RQ3 : What are open issues to be further investigated?

3.3.2 Search Strategy

We developed a hybrid strategy to exhaustively search for MDS papers. The goal was

not to miss any relevant MDS paper and therefore to find as many primary MDS papers

as possible. Our hybrid strategy consists of three parts: automatic search (Section

3.3.2.2), manual search (Section 3.3.2.3), and snowballing (Section 3.3.2.4). In each

step, we applied inclusion and exclusion criteria (Section 3.3.3) to select primary MDS

studies.
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Figure 3.1: An overview of our SLR process.

3.3.2.1 Identification of a Search String

Based on the research questions (Sect. 3.3.1), we created search terms to form search

strings, e.g. model-driven, model-based, security. We divided our search terms into

three categories: MDE (model-driven, model-based, model*, MDA, UML), modelling

(specify*, design*), transformations (transform*, code generation) and security.

To form the search string, we used a conjunction that combines disjunctions of the

keywords of each term group. We had to refine our search string several times to make

sure that as many potential relevant papers as possible are reached and had to adapt it

according to the required format of the search engines.

3.3.2.2 Step 1: Automatic Search in Databases for Scientific Literature

Using the search string described earlier, we performed automatic search within five

electronic databases for publications between 2000 and 2014: IEEE Xplore1, ACM Dig-

ital Library1, Web of Knowledge (ISI)1, ScienceDirect (Elsevier)2, and SpringerLink

(MetaPress)2.

3.3.2.3 Step 2: Manual Search in Conferences Proceedings and Journals

To ensure the correctness and completeness of our review, we also conducted two manual

searches: a manual search in potentially relevant peer-reviewed journals, and another

1ieeexplore.ieee.org, dl.acm.org, apps.webofknowledge.com
2sciencedirect.com, link.springer.com

http://ieeexplore.ieee.org
http://dl.acm.org
http://apps.webofknowledge.com
http://sciencedirect.com
http://link.springer.com
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one in potentially related conference proceedings. We selected journals and conferences

that are highly ranked either in the domain of software engineering (SE) or security and

privacy (S&P). We manually searched for all published papers from 2001 to 2014 in 10

journals and 10 conference proceedings as shown in Table 3.1 and 3.2.

Table 3.1: Journals used in our manual search.

Acronym Full Name Field Rating

TSE IEEE Transactions on Software Engineering SE 56

JSS Journal of Systems and Software SE 34

IEEE S&P IEEE Security & Privacy S&P 31

TISSEC ACM Transactions on Information and Sys-
tem Security

S&P 29

TDSC IEEE Transactions on Dependable and Se-
cure Computing

S&P 28

COMPSEC Computers & Security S&P 27

INFSOF Information & Software Technology SE 27

SOSYM Software and System Modeling SE 27

TOSEM ACM Transactions on Software Engineering
and Methodology

SE 25

ESE Empirical Software Engineering SE 20

Table 3.2: Conference proceedings used in our manual search.

Acronym Full Name Field Rating

ICSE International Conference on Software Engi-
neering

SE 60

CCS ACM Conference on Computer and Commu-
nications Security

S&P 54

S&P IEEE Symposium on Security and Privacy S&P 49

USENIX USENIX Security Symposium S&P 39

AOSD Modularity/Aspect-Oriented Software De-
velopment

SE 37

NDSS Network and Distributed System Security
Symposium

S&P 35

ACSAC Annual Computer Security Applications
Conference

S&P 29

SACMAT Symposium on Access Control Models and
Technologies

S&P 28

ESORICS European Symposium on Research in Com-
puter Security

S&P 24

MODELS Model Driven Engineering Languages and
Systems

SE 21

The 10 journals are chosen based on the relevance, the high impact index (Journal Cita-

tion Reports 2011), and the field ranking in the last 10 years according to the Microsoft
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Research website. 6 journals from SE and 4 journals from S & P were selected. We

added the Empirical Software Engineering journal in order to find empirical validations

of MDS approaches. The 10 conferences are also chosen on the relevance, and the con-

ferences field ranking in the last 10 years according to the Microsoft Research website.

3.3.2.4 Step 3: Snowballing for a complete set of primary MDS papers

The automatic search and manual search processes yielded a set 95 primary MDS papers.

To make sure that our final set of MDS papers is complete we adopted the snowballing

strategy presented by Wohlin et al. [235]. We use the big set of primary MDS papers

provided by automatic and manual searches as input for our snowballing strategy as

follows.

Figure 3.2 shows how we formed the input set of MDS papers for snowballing. After

conducting the automated search and applying the primary study selection procedures,

we obtained a first set of 80 MDS papers (Step 1). Similarly, after conducting the manual

search and applying the primary study selection procedures, we obtained a second set

of 29 MDS papers (Step 2). We merged these two sets in order to form a set of selected

MDS papers that was used for partially conducting our snowballing strategy. Jalali et

al. [102] provided a comparison between the SLR method and the snowballing method.

They state that the snowballing method can be used to complement the automated

search and manual search in terms of closing the final set of primary MDS papers.

Because we already performed the automatic and manual searches for obtaining a set

of 95 primary MDS papers, we only adopted the following 3 out of 5 steps of the

snowballing strategy:

1. Backward snowballing : identify further potential primary MDS papers in the ref-

erence lists of the current primary MDS papers. Initially this is the set of papers

found by the automated search and manual search.

2. Forward snowballing : identify further potential primary MDS papers by searching

for papers that cite a current primary MDS papers. We used Google Scholaras

recommended [235], because it captures more than individual databases.

3. If no new papers are found by repeating steps 1 & 2, then identify further primary

MDS papers by searching publications lists on personal homepages or author pages

of database and institutions for the primary authors of the identified primary MDS

approaches. This step was performed to ensure that the most recent publications

on the same or similar topics are included. If additional papers are identified then

go back to Step 1.
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(1)	  A	  set	  of	  80	  
MDS	  papers	  
from	  
Automa5c	  
Search	  results	  

(2)	  A	  set	  of	  29	  
MDS	  papers	  
from	  Manual	  
Search	  results	  

A	  set	  of	  95	  
MDS	  papers	  
a=er	  merging	  
(1)	  and	  (2)	  

SNOWBALLING	  

The	  Final	  Set	  of	  	  
Primary	  MDS	  publica5ons	  

Figure 3.2: Snowballing after Automatic Search & Manual Search.

Once no additional papers were found in step 3, we closed the cycle of identified primary

MDS papers for data extraction, synthesis, and evaluation.

3.3.3 Inclusion and Exclusion Criteria

We already discuss our definition of MDS to give a better idea how we consider a paper

as an MDS paper in Section 3.2. Here, we show in detail the inclusion and exclusion

criteria that have been used in our primary MDS studies selection process.

MDS approaches for developing secure system vary a great deal as different security

concerns can be addressed and different model-driven techniques can be used. There-

fore, it was absolutely necessary to define thorough inclusion and exclusion criteria to

select the primary studies for answering our research questions:

1. Papers not written in English were excluded and already filtered out in our search

process.

2. Papers with less than 5 pages in IEEE double-column format or less than 7 pages in

LNCS single-column format were excluded.

3. Papers not concerned with MDE were excluded. For example, papers addressing

security problems without using MDE techniques were excluded.

4. Papers proposing model-driven approaches without a focus on security concerns were

excluded. E.g., model-driven approaches for performance analysis were excluded.

5. When a single approach is presented in more than one paper describing different
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Table 3.3: Summary of the selection process based on Automatic Search

Source IEEE ACM ISI SD SL Total

Search results 2997 1506 3299 828 2003 10633
After reviewing titles/keywords 109 90 91 24 81 395
After reading abstracts 78 44 35 19 61 237
After skimming/scanning 31 21 17 15 20 104

After final discussion 93
Finally selected 80

parts of the approach, we included all these papers, but still considered them as a single

approach.

6. When more than one paper described the same or similar approaches, we only in-

cluded the one with the most complete description of the approach. E.g., an extended

paper [184] published in a journal will be selected instead of its shorter version [190]

published in a conference proceeding.

7. Papers with insufficient technical information regarding their approaches were ex-

cluded. E.g., papers that neither provide a detailed description of secure models, nor a

precise security notion, nor transformation techniques, were considered incomplete and

were excluded.

8. Only papers with a MDD perspective, i.e. MDE papers in which models are central

artefacts throughout the development phase, were selected. Papers using model-based

techniques only for verifying or analysing security mechanisms without a link to the im-

plementation code were excluded.

9. Papers with less than 2 citations per year minus 2 as reported by Google Scholar were

excluded.

With these 9 clearly defined inclusion and exclusion criteria, we were able to perform

the selection process in a more transparent and less biased way.

3.3.4 Primary Studies Selection and Its Results

Here we present the selection process conducted while performing each search step in

the three-pronged search process and its results. Figure 3.3 shows details of our whole

selection process with all the numbers of MDS papers selected in each step.

3.3.4.1 Selection Process in the Automatic Search Step

Table 3.3 shows the results of our automatic search that is explained as follows. The

papers found from the repositories described in Section 3.3.2.2 were divided among
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Cross checked and 
final discussion 

(4 removed)

Data Extraction 
of

108 MDS papers

29
selected

64 primary 
MDS papers 

selected
+ 

12 sidekick 
MDS papers

80 
selected
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papers
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MDS papers 
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MDS papers

93 primary 
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Figure 3.3: The Selection Process with all the steps

reviewers. For each paper, we first read the paper’s title, keywords, and the venue where

the paper was published to see whether it is relevant to our research topic. If the title

and keywords of a paper were insufficient for deciding whether to include or exclude it,

we further checked the paper’s abstract. If the abstract of the paper were insufficient for

deciding whether to include or exclude it, we further skimmed (and scanned if necessary)

the paper’s full text. Once each reviewer had done selecting candidate papers from his

repositories, all the candidate papers from different repositories were merged to remove

duplicates. We kept track of this merging process to see which duplicates were found.

Duplicated papers were directly included in the final set of selected papers. All other

candidate papers, were discussed by at least two reviewers. Some border-line papers

were checked by all reviewers. We maintained a list of rejected candidate papers, with

reasons for the rejection, after discussion among reviewers. In the end, 80 MDS papers

were selected.

3.3.4.2 Selection Process in the Manual Search Step

29 candidate MDS papers were found in the manual search step. By merging with the

set of 80 papers above, we obtained in total 95 MDS papers.
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Figure 3.4: Our selection process while snowballing

3.3.4.3 Selection Process in the Snowballing Step

After the first two steps, we conducted the snowballing as described in Section 3.3.2.4.

However, once obtaining all the numbers of citations of every paper in the set of 95

MDS papers above, we found out that some papers are much less cited than others, or

even having no citation at all. We argue that the papers without a minimum number

of citations after getting published for a specific period could be considered as not

significant in terms of research impact and continuation. On the other hand, we also

were not too strict on this aspect. Specifically, we decided that papers with the number

of Google Scholar citations3 less than 2 citations per year minus 2 are excluded. Thus,

the selection criterion 9 about number of Google Scholar citations was added. This

means we leave out the papers that are not active, and do not have a minimum impact

3The citations of these 95 MDS papers were dated on May 19, 2014
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after being published for more than 2 years. Of course, this also means the recent MDS

papers published in 2013 and 2014 are not excluded by this citation criterion.

In 95 MDS papers, 31 papers were removed according to this citation criterion. Conse-

quently, we used 64 primary MDS papers as the input for our snowballing process. In

the snowballing step, we also apply the citation criterion4 together with other criteria

to select primary MDS papers. Details of our selection process while snowballing are

shown in Figure 3.4. It is also important to note that every MDS candidate paper is

cross-checked by three reviewers before any inclusion or exclusion decision. After all

three steps, we have ended up with 93 primary MDS papers. However, we realised that

some MDS papers, which were removed because of the citation criterion, should be put

back in the final set as “sidekick” MDS papers. The main reason is that those MDS

papers contain extra details of the approaches presented in the selected primary MDS

papers. A “sidekick” MDS paper is a true MDS paper that was only excluded because

of the citation criterion. Every “sidekick” MDS paper is part of a primary MDS ap-

proach. If they were removed, some important properties of the relevant primary MDS

approaches could be missing in the data analysis. E.g., a paper presents an empirical

study of a primary MDS approach. We would miss that empirical study of the primary

MDS approach if the “sidekick” paper was removed because of the citation criterion.

Thus, 15 “sidekick” MDS papers were put back in the final set. In the end, the final

set of 108 MDS papers is used for data extraction and evaluation.

3.4 Evaluation criteria & Data extraction strategy

Classifications and taxonomies are important in any research domain, e.g. [62], [151]. In

this section, we describe a set of key artefacts of MDS that forms a so-called evaluation

taxonomy of MDS. We derived our evaluation taxonomy from our research questions.

Moreover, our evaluation taxonomy are also based on the synthesis of evaluation criteria

described in [120] and [118]. Having an evaluation taxonomy makes it more systematic to

assess key artefacts of MDS as well as classify and compare different MDS approaches.

Our taxonomy of MDS classifies different dimensions that one has to take into account

while leveraging MDE techniques for developing secure systems. The elements of our

taxonomy are described as follows. For each element, the data extraction strategy is

described to show how we extracted data from the primary studies to answer our research

questions.

4The citations of MDS papers found in snowballing were dated on-the-fly.
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Security concerns: In this dimension, we classify primary studies according to the

security concerns/mechanisms that the MDS approaches are dealing with. The range of

security concerns is broad, e.g. authorisation, authenticity, availability, confidentiality,

integrity, etc. We will count the number of papers addressing each security concern.

Thus, security topic areas that addressed by the MDS approaches are measured quan-

titatively.

Modelling approaches: Security concerns can be modelled separately or not from the

business logic, and by using different modelling techniques/languages. Primary studies

can be classified by the paradigms of modelling, i.e. Aspect-Oriented Modelling (AOM)

or non-AOM. In AOM approaches, security concerns are modelled in separate aspect

models to be eventually woven (integrated) into the primary model(s). Using AOM,

security concerns can be modelled separately, modularly in design units (aspects) [214].

Vice versa, in non-AOM approaches, security concerns are not modelled as AOM as-

pects. That means security concerns can be modelled together with business logic in

every place where they are needed. But, we also classify as non-AOM approaches where

security concerns modelled separately (separation of concerns) from the business logic

that can be integrated later into the system. E.g., a non-AOM approach could (sep-

arately) specify an access control policy using a Domain-Specific Language (DSL)5,

and then transform and/or generate XACML6 standard file for enforcing the access

control policy. In other words, we would like to know the percentage of non-AOM

approaches compared to the percentage of “full” AOM/Aspect-Oriented Software De-

velopment (AOSD) approaches. Separation of concerns can be considered as a key

principle to cope with modern complex systems. Furthermore, approaches are also clas-

sified by the modelling languages, e.g. UML diagrams, UML profiles, or some kinds

of DSLs, used to model security concerns and business logic. The outcome models are

classified as of type standard or non-standard, and structural, behavioural, functional

or other types. The granularity levels of outcome models are also reviewed.

Model-to-model transformations (MMTs) & tools: MMTs can take part in the

key steps of the development process, e.g. for composing security models into business

models and/or transforming platform-independent models (PIMs) to platform-specific

models (PSMs). We extract data related to MMTs for answering the following ques-

tions: How well-defined are the MMTs rules? How MMTs are implemented? Using

which MMT engines (e.g. ATL7, QVT8, Kermeta9, Graph-based MMTs, etc.)? Is

there any tool support for the transformation process? What is the automation level

5http://martinfowler.com/books/dsl.html
6extensible Access Control Markup Language, a XML-based declarative access control policy language
7http://www.eclipse.org/atl/
8http://projects.eclipse.org/projects/modeling.mmt
9www.kermeta.org
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of MMTs: automatic (if entire process of creating the target model can be done auto-

matically), semi-automatic, and manual. Some information about the classification of

MMTs should also be extracted to see if it supports well for the security mechanisms?

E.g., endogenous MMTs or exogenous MMTs used?

Model-to-text transformations (MTTs, code and/or security infrastructure

generation) & tools: MDE also supports the development of secure systems by auto-

matically generating code, including (partial) complete, configured security infrastruc-

tures. Data should be extracted to see the main purposes of using code generation

techniques. Is the whole system including security infrastructure generated? Or just

the security infrastructure (configuration) is generated? Can fully code and/or security

infrastructure be generated? Or just the (code) skeleton of the system is generated?

Which tools are used for the code generation process?

Application domains: MDS approaches are also classified on the target application

domains of the secure systems. Some MDS approaches might target only a specific ap-

plication domain. Some might explicitly be applicable to different application domains

in general. Others might implicitly be applicable to different application domains. Some

examples of application domains are information systems, web applications, databases,

secure smart-card systems, embedded systems, distributed systems, etc. The applica-

tion domains might be overlapping but could show relatively the intended application

domain(s) of a specific MDS approach.

Evaluation methods: To point out the limitations of each approach, we check again

how the approach has been evaluated. How many case studies have been performed?

What results have been obtained? What other evaluation methods (other than case

studies) have been applied to evaluate these approaches? This can be answered by

extracting data from the validation section of each paper.

To make the data extraction consistent among the reviewers, we all tried to extract the

relevant data from a small set of prospective primary papers. We then discussed to

ensure a common understanding of all the extracted data items and refined the data

extraction procedure. Excel files were used for storing the extracted data while a tool

called Mendeley10 was used in reviewing and controlling the selected papers. The final

set of primary studies (selected papers) was divided among reviewers. Each reviewer

examined again the allocated papers and enriched the Excel files to ensure detailed

data according to the taxonomy has been extracted from the selected papers. The data

extraction forms of each reviewer were read and discussed by two other reviewers. All

ambiguities were clarified by discussion among the reviewers.

10http://www.mendeley.com/

http://www.mendeley.com/
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Figure 3.5: How much each concern is addressed in MDS?
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Figure 3.6: Intersection of Authentication, Authorisation, and Confidentiality

To answer the last two research questions, we reviewed the range of security topics, the

scope of MDS research work and the quality of MDS research results to determine

whether there are any observable limitations and open issues.

3.5 Results

First, in Section 3.5.1 we report on some statistic results according to the evaluation

criteria. Then, the principal MDS approaches and other emerging/less common MDS
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Figure 3.7: Statistics of some key MDS artefacts

approaches are revealed and described in Sections 3.5.2, 3.5.3 respectively. Finally,

Section 3.5.4 analyses the trends of some key factors in MDS.

3.5.1 Results per Evaluation Criterion

An overview of the results can be seen in Figures 3.5, 3.6 3.7 and Tables 3.4, 3.5. Figs.

3.5, 3.6 show the statistics about how each security concern has been addressed by the

primary MDS approaches. Fig. 3.7 visualises other key results for a representative set

of evaluation criteria. Tables 3.4, 3.5 summarise all the values for all evaluation criteria.

We present the results for each evaluation criterion as follows.

Security concerns/mechanisms: Fig. 3.5 shows the statistic of security concerns

tackled by the reviewed MDS approaches. We can see that authorisation is addressed

the most, by 75% of the examined MDS papers. Moreover, more than half of the MDS

papers (53%) deal with authorisation only (see Figs. 3.5, 3.6). The second security con-

cern in terms of receiving attention is confidentiality addressed by 42% of the examined

MDS papers. 11% of the examined MDS papers tackle confidentiality solely (see Figs.

3.5, 3.6). Other security concerns, like integrity, authentication, and availability are,

however, less tackled with 27%, 24%, and 16% correspondingly. These results suggest

that more MDS research work should focus on particular security concerns like integrity,

availability, and authentication.
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We also would like to know how much multiple security concerns are tackled at the same

time by the MDS approaches. Fig. 3.6 displays the statistic about how much three key

security concerns (Authentication, Authorisation, and Confidentiality) are tackled solely

and simultaneously. Only 13% of the examined MDS papers propose methodologies to

tackle all three together. About 15% of the examined MDS papers deal with two

concerns simultaneously: Authentication and Authorisation (3%), Authentication and

Confidentiality (6%), Confidentiality and Authorisation (6%). Not only multiple security

concerns are less tackled, but also rarely the inter-relations among multiple security

concerns are formally taken into account in the reviewed MDS approaches. Future MDS

approaches should address multiple security concerns simultaneously, systematically by

formally specifying inter-security concern relations. The inter-relation among security

concerns have to be taken into account while developing DSLs for specifying security

requirements.

These first results are very interesting. Indeed, an open question is “why in MDS autho-

risation and confidentiality got more attention?”. A possible answer could be that MDS

is a relatively young research area with more “model-driven” than “security”. MDS is

the common name of the MDE approaches specifically focusing on secure systems devel-

opment. Thus, among the authors of the published MDS papers, there are significantly

more researchers with MDE background than security engineering background. Re-

searchers that mainly work with MDE techniques may first address authorisation (e.g.

AC) because it is closer to application logic and functional requirements than other se-

curity concerns. This could be linked to the nature of security concerns. Some security

concerns (e.g. authorisation) are closer to the application level than others. MDE re-

searcher might not be familiar with security concerns to be addressed at the network

layer. Given the background of the authors of the most renowned MDS approaches, it

might be that we need more interest in MDE from the security engineering community

to see more MDS approaches dealing with security concerns like integrity, availability,

and authentication. Therefore, we suggest that more effort should be put into com-

municating MDE techniques as well as MDS approaches to the security engineering

community.

Modeling approaches: Fig. 3.7a shows that 87% of the examined papers used stan-

dard UML models and defined DSLs for security concerns using the profile and stereo-

type mechanisms of the UML. 13% used other DSLs (e.g. [167], [152], or [169]). Thus,

we understand that standardised, common UML models are broadly used by MDS ap-

proaches. On the other hand, defining DSLs (either UML profiles or other DSLs) is

also very popular to leverage MDE techniques for secure systems development. UML

profiles and other kinds of DSLs have been developed to better capture the specific

semantics of security concerns. In other words, defining DSLs plays a key role in MDS
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because that way allows expressing security concepts/elements more easily. However,

using UML profiles is not the only way for developing DSLs in MDS approaches. DSLs

which are not UML profiles are also recommended, especially DSLs that can deal with

multiple security concerns in the same system.

15% of the papers discuss approaches that are based on AOM (Fig. 3.7b) where security

concerns are specified as aspects and eventually woven into primary models. Even

though the remaining 85% are not really aspect-oriented, most of them still follow the

separation of concerns principle and really separate security concerns from the main

business logic 11. In most of the cases, security concerns were specified separately from

the business logic in PIMs and transformed into PSMs that can be refined into security

infrastructures (e.g. XACML) integrated with the systems.

Security concerns are often modelled and analysed with a DSL that is concern-specific.

But, few MDS papers have well-defined semantics for their languages so that these

languages can be used for formal analysis. Only some papers related to the UMLsec,

SecureUML approaches (see Section 3.5.2) provide some formal basis for security anal-

yses. This shows that further efforts are required to mature security-specific modelling

languages to foster analyses. Most (89%) of the MDS papers use structural models. Be-

havioural models are used in 31% of the reviewed MDS papers. Other types of models

like domain specific models accounted for 13%. Using solely one type of models could

not be enough to be able to express multiple security concerns. Thus, very few modelling

approaches propose to deal with multiple security concerns together like [204, 85]. Most

of them are specific to address only one security concern solely.

Model-to-model transformations (MMTs) & tools: Table 3.5 shows that 74% of

the papers clearly mentioned MMTs while 26% did not use or mentioned transforma-

tions, e.g., because of a manual integration of security. More specifically, 57% of the

examined papers use exogenous transformations. Most of these were used to transform

PIMs to PSMs (Fig. 3.7d). Security concerns were modelled using DSLs for each

concern to obtain PIMs that were transformed into PSMs, which can be refined into

code. 19% define endogenous MMTs that are used to weave/compose security models

into base models defined using the same DSLs.

34% of the examined MDS papers implement automatic MMTs, 6% describe semi-

automatic (interactive) MMTs, and only 4% are manual (Fig. 3.7e). But 56% do not

specifically provide any implementation information about MMTs, e.g. some simply

provide mapping rules for transforming models. Having automated MMTs is one of

the key success factors of MDE [99] and MMTs play a crucial role in MDS as well.

11Note that in this paper we only classified a modelling approach as AOM if a concern is modelled as
an aspect model that can be woven into a primary model. We explained this point in Section 3.4.
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Table 3.4: Results classified by the evaluation criteria

Evaluation criteria # papers %

Security concerns
(overlapping)

Confidentiality 45 42
Integrity 29 27
Availability 17 16
Authenticity 26 24
Authorisation 81 75

Aspect-Oriented
Modeling/AOSD

Yes 16 15
No 92 85

Standard models
Yes(UML/UML profiles) 94 87
Other DSLs 14 13

Type of models
(overlapping)

Structural 96 89
Behavioural 33 31
Others 14 13

Especially some important semantics of security mechanisms might be embedded in the

MMTs. Providing MMTs implementation details in MDS is important to evaluate

the efficiency of each approach. It can be also helpful for other researchers to learn

from previous experiences in choosing or developing a suitable transformation engine for

their work. 19% of the selected MDS papers describe their MMTs implementation using

standard transformation languages like ATL and QVT. 81% of the papers only describe

the transformation rules without implementation details, or use other transformation

languages like graph-based transformations, or specific (Java-based) compilers/tools.

Model-to-text transformations (MTTs) & tools: Table 3.5 shows that 64% of the

papers describe MTTs or the generation of code or security infrastructures. 36% of

the papers do not describe MTTs in details. Some mainly used models for verifying or

analysing implemented secure systems, e.g. UMLsec where code/security infrastructure

generation is mainly mentioned in future work. Comparing the purposes of MTTs, we

can see in Fig. 3.7c that there are nearly as many MDS papers (34%) that only generate

security infrastructure, such as XACML or security aspects code, as the MDS papers

that describe generation of both code and security infrastructure (29%).

The tools used for code generation are not shown in Table 3.5 because there are too many

different tools. Besides Eclipse-based MTT engines like Xpand12, there are many cases

where ad-hoc self-developed engines (e.g. Java-based tools, parsers, etc.) are used. A

reason for that could be that many “ad-hoc” tools are preferred because of their specific

support for a specific security domain. Ark [233]13, for example, transforms an input

12https://www.eclipse.org/modeling/m2t/?project=xpand
13extends the code generation engine of the openArchitectureWare framework that was already mi-

grated into Eclipse as Xpand

https://www.eclipse.org/modeling/m2t/?project=xpand
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Table 3.5: Results classified by the evaluation criteria

Evaluation criteria # papers %

Transformations used
Yes 80 74
No/Unknown 28 26

Transformations level
Endogenous 20 19
Exogenous 62 57
Not Provided 26 24

Transformations
automation

Automatic 37 34
Semi-automatic 6 6
Manual 4 4
Not Provided 61 56

Standard
Transformations

ATL/QVT 20 19
Others/not mentioned 88 81

Code generation
mentioned

Yes 69 64
No 39 36

Code + Security
Infrastructures
generated

Yes 31 29
Only Security Infrastructure 37 34
Not Provided 40 37

Application
Domains

IS/e-commerce 19 18
Data warehouses 20 19
Smart cards/ embedded systems 7 6
Distributed Systems/SOA 34 31
Others 28 26

Type of validation
Controlled experiment 2 2
Industry case studies 5 5
Academic case studies 72 67
Example only 23 21
Not Provided 6 5

UML model designed with the proposed UML profile into a skeleton of application code

(program code and deployment descriptor). More ad-hoc Java-based tools like the one in

[51] generates code (XACML policy files) from the constraints specified in SECTET-PL

The tool uses Antlr [197], a compiler program for the syntax analysis of the constraints.

In general, MMTs and MTTs are widely used in MDS to improve the productivity of

the development process. Most of the primary MDS approaches do mention to leverage

MMTs and/or MTTs by describing transformation rules/intentions. However, more

than half of the primary MDS approaches did not provide implementation details of

MMTs or MTTs. Not many primary MDS approaches use standard transformation

languages/tools like ATL or QVT but rather ad-hoc tools like Java-based compiler/tools

for engineering security into the system. With the progress in the maturity of standard
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MMT and MTT tools, they should be leveraged more in the future MDS approaches.

Most of the MMTs in the selected studies are exogenous used for transforming PIMs

to PSMs. The main reason is that there are many approaches (e.g. dealing with

access control) generating only security infrastructure. Access control models (PIMs)

often used to generate XACML configuration files (PSMs) for enforcing security policy.

Another reason could be the lack of all-round approaches for the whole development cycle

of secure systems which in the end lead to automatic generation of both code and security

infrastructure. An all-round approach could follow AOM paradigm to fully leverage the

automation of MMTs and MTTs for composing, transforming and generating both code

and security infrastructure. Developing tool chains (based on MMTs and MTTs) to

derive from models to implementation code is also an important piece of future work.

Few complete tool chains to automate (most of) the MDS development process have

emerged, but are still rare.

Application domains: Fig. 3.7f shows the main application domains that have been

secured by MDS approaches. In general, these are distributed systems or SOA (31%),

information systems or e-commerce (18%), data warehouses (19%), and smart cards/em-

bedded systems (6%). The remaining MDS papers do not clearly state a domain, or

could be generically applicable for different application domains, such as [204, 126, 171,

98].

Evaluation methods: Most of the papers (67%) describe academic case studies used

to evaluate their approaches. There are still quite many MDS papers (21%) which

only provide “running examples” to illustrate their approaches. Few MDS papers show

controlled experiments (2%) and industry case studies (5%) in the evaluation of their

approaches. There are very few papers that provide an in-depth evaluation like [59],

[218], and [37]. Therefore, we suggest that more effort should be put in evaluating MDS

approaches, e.g., with empirical studies or benchmarks.

3.5.2 Principal MDS Approaches

Altogether, the synthesised data show that there are currently several MDS approaches

that have been proposed, used, and discussed in multiple publications. We would like

to identify the most influential MDS approaches in terms of numbers of publications

and citations. In total, five primary MDS approaches, which are called principal MDS

approaches, have been identified. They are summarised in Tables 3.6, 3.7. Each has

at least 7 primary MDS papers in our final set. The details of each approach, except

Secure data warehouses, can be found in [144]. Here we briefly present each approach,

and then compare some key points among them.
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SECTET firstly aimed at securing web services by leveraging the Object Constraint

Language (OCL) for specifying RBAC [9]. Based on that, a complete configured se-

curity infrastructure (XACML policy files) is generated. Later on, the authors pro-

posed a specification language namely SECTET-PL (OCL-based) which is part of the

SECTET framework for model-driven security for B2B workflows. In this framework,

Constraint based RBAC (CRBAC) can be specified and then transformed into low-level

web services standard artefacts [11]. SECTET-PL is also used for modelling restricted

(RBAC-based) delegation in Service Oriented Architecture [12]. Their modelling ap-

proach is extended in [90, 89]. MMT and MTT are both carried out in a complete

model-driven framework [87, 51, 49]. SECTET mainly addresses RBAC as its security

concern and focuses on generating security infrastructure (XACML), not all the source

code. Recently, Memon et al. [150] and also Katt et al. [119] propose two pattern re-

finement approaches based on SECTET framework that allows flexible configurations

of SOA security.

Secure data warehouses (DWs) are the motivation for the work of developing MDS

techniques for secure database development. This MDS approach is very specific for

developing secure DWs. Fernández-Medina et al. [73, 74] extend OCL and UML for

secure database development [75]. Their approach also uses UML profiles for modelling

security enriched PIMs as inputs for a model-driven framework to create secure DW

solutions [76, 219]. Secure PIMs can be transformed to secure PSMs by a set of formally

defined QVT rules [217, 218, 216]. These PSMs can then be used for generating code

with security properties. A similar MDS approach for developing secure XML data

warehouses is presented in [231, 230, 229, 228] More recently, the above mentioned

techniques for secure DW development are also leveraged in a reverse engineering style

to modernise legacy DWs [41].

SecureMDD is proposed for facilitating the development of smart card applications

based on UML models. In SecureMDD, UML class diagrams are used for modelling

static aspects while UML sequence and activity diagrams are used for modelling dynamic

aspects of a system [156]. From platform-independent UML models (PIMs) of a system,

its formal abstract state machine (ASM) specification and Java Card code are generated.

The generated abstract state machine specification is used for formally proving the

correctness of the generated code regarding the security properties of the system. Thus,

their MDS approach integrates MDE techniques with semi-formal and formal methods

for verification as well as the implementation of security-critical applications [158, 159,

161]. The authors illustrated that SecureMDD is applicable for the development of

large and complex secure Smart Card applications as well [160]. The main limitations of

SecureMDD are its specific application domain and the lack of analysis for consistency

between the UML models and the ASM model.
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SecureUML is the approach which aims at bridging the gap between security mod-

elling languages and design modelling languages. First, UML and UML profile are used

for modelling application with role-based access control that can lead to generated com-

plete access control infrastructures [143]. Then, Basin et al. [32] propose a UML-based

language (UML profiles) with different dialects, which forms modelling languages (such

as SecureUML + ComponentUML) for designing secure systems. Access control

infrastructures for server-based applications can be generated automatically from mod-

els. Their work mainly focuses on access control constraints based on RBAC in design

models. Semantics of SecureUML (and ComponentUML) are provided by Brucker

et al. [52] and Basin et al. [24, 25] which enable formal analysis of security-design models.

Based on this work, Clavel et al. show and discuss their practical experience of applying

SecureUML in industrial settings [59]. Recently, the work on SecureUML has been

continued by combining SecureUML + ComponentUML with a language for graphi-

cal user interfaces (GUI), namely ActionGUI [29, 28]. These modelling languages with

MMT enable the full generation of security-aware GUIs from models for data-centric

applications with access control policies. Another recent work by Dios et al. [65] makes

use of ActionGUI for model driven development of a secure eHealth application. The

main limitation of SecureUML is its sole focus on access control.

UMLsec is one of the most well-known UML-based approaches in MDS proposed early

by Jürjens [112] and Jürjens [113]. Security requirements, threat scenarios, security

concepts, security mechanisms, security primitives can be modeled by using security-

related stereotypes (UML profiles), tags, goal trees. and security constraints. Thus, it is

possible to formally analyse UMLsec diagrams against security requirements regarding

their dynamic behaviours. Not like SecureUML only focusing on authorisation (e.g.

access control), UMLsec addresses multiple security concerns such as confidentiality,

integrity [106]. Not to a great extent but AOM is also used in the UMLsec approach

[108]. Later on, UMLsec is deployed by Best et al. [37] in an industrial context for

designing and analysing designs of distributed information systems. On the other hand,

relevant tools support for UMLsec are presented in [115]. To tackle also social challenges

in security, UMLsec was combined with Secure Tropos [173] to take on security from

requirement engineering phase [174]. This work is then extended and applied to two

different industrial case studies [175]. A more recent work related to UMLsec is by

Jürjens et al. [114] for incremental security verification for evolving UMLsec models.

However, UMLsec lacks support for improving productivity of the development process

in terms of automated model transformations. Even having a view from models to code

but the lack of automated transformation(s) from models to implementation code is a

miss in UMLsec. Other than that, UMLsec could be considered as the most complete

and mature MDS approach that deals with multiple security concerns, from very early
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at the requirement engineering level, with transformations, formal analysis possibility,

tools support, industrial case studies.

In general, the most common point among the principal MDS approaches is that

they all propose to use UML profiles in their modelling phase. Even though not fol-

lowing truly AOM, defining UML profiles as DSLs for modelling security concerns

still allows these principal MDS approaches to have separation of concerns. Except

SecureUML which only addresses access control, other approaches are able to touch

multiple security concerns. Structural models are mainly used in all five approaches.

SecureMDD and UMLsec have also used behavioural models. Exogenous MMTs are

defined in SECTET and SecureDWs to transform PIMs (UML models) to PSMs.

SecureUML and UMLsec integrate security into systems specified in UML using en-

dogenous MMTs. SecureMDD combine both kinds of MMTs in their development

process. Some standard transformation tools are used (e.g. QVT and XPAND) among

other self-developed tools (java-based compilers). With their formal background, Se-

cureMDD, SecureUML and UMLsec provide some tools for formal verification of

security properties. These three also have industrial case studies while SECTET and

SecureDWs have not. Generally, each approach is quite specific to a application do-

main, e.g. SecureDWs for secure database development, or SecureMDD for secure

smart card development.

3.5.3 Less common/emerging MDS Approaches

It would not be fair to only discuss about the above-mentioned principal MDS ap-

proaches. There are other less common or emerging MDS approaches that are also

worth to get noticed and analysed. We discuss some representative ones here. For the

full list, readers are referred to Tables 3.8, 3.9, 3.10, and 3.11. The less common or

emerging MDS approaches here are simply classified into several groups as follows.

Pattern-based MDS: Based on domain-independent, time-proven security knowledge

and expertise, security patterns can guide security at each stage of the development pro-

cess. Some MDS approaches that leverage security patterns are remarkable. Abramov

et al. [1, 2, 3] propose an MDS framework for integrating access control policies into

database development. At the pre-development stage, organisational policies are speci-

fied as security patterns. Then, the specified security patterns guide the definition and

implementation of the security requirements which are defined as part of the data model.

The database code can be generated automatically after the correct implementation of

the security patterns has been verified at the design stage. Their approach has been

evaluated in a controlled experiment [3]. Also using security patterns but at a different
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level of abstraction, Kim et al. [126, 127] develop a pattern-based technique for system-

atic, model-driven development of secure systems focusing on access control. Because

this work mainly focuses on the design stage, access control is specified as design pattern.

Bouaziz et al. [46] introduce a security pattern integration process for component-based

models. With this process, security patterns can be integrated in the whole development

process, from UML component modelling until aspect code generation. Another pattern-

driven approach is proposed by Schnjakin et al. [210] for facilitating the configuration

of security modules for service-based systems. The proposed security advisor enables

the transformation from the general security goals, via security patterns at different ab-

straction level, to concrete security configurations. Menzel et al. [154] uses the security

configuration patterns to operate the transformation of architecture models annotated

with security intentions to security policies. The patterns that provide expert knowledge

on Web Service security can be specified using a DSL. As using cloud services provided

by cloud providers is getting more popular, Moral-Garcia et al. [163] recently propose

an enterprise security pattern for securing Software as a Service. The security solution

provided by the pattern can be driven by making design decisions whilst performing the

transformation between the solution models. Specifically, from a Computation Indepen-

dent Model (cim), different PIMs can be derived based on different design decisions with

security patterns. Those PIMs are transformed into PSMs which are then transformed

into Product Dependent Models.

MDS for Security@Runtime: Many modern applications such as cloud-based software-

as-a-service (SaaS) applications require the dynamic adaptation or even evolution of both

security and service at runtime. More and more (MDS) approaches have been being

proposed in this area. Almorsy et al. [16] introduce an approach called Model Driven

Security Engineering at Runtime (MDSE@R). MDSE@R is based on a UML profile with

tool supports for separately specifying base system and security, and then merging those

models into a joint system-security model. Because security and system models are sep-

arated and loosely coupled, they can evolve more easily. Security controls are enforced

dynamically into the target system at the code level. After that, in [15] the same authors

leverage the MDSE@R approach for multi-tenant, cloud-hosted SaaS applications. This

allows dynamically engineering security for multi-tenant SaaS applications at runtime.

Recently, Almorsy et al. [14] develop a new DSL called SecDVSL for specifying visu-

ally a variety of security concepts like objectives, threats, requirement, architecture, and

enforcement controls. SecDVSL also allows maintaining traceability among these secu-

rity concepts. Not specifically for SaaS applications but component-based architecture,

Morin et al. [167] leverage the notion of model@run.time to enable dynamically enforcing

role-based access control policies into component-based systems. In the follow-up work,

Nguyen et al. [184] deal with not only access control policies but also the more complex,
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but essential, delegation of rights mechanism. The propose MDS framework allows dy-

namically enforcing/weaving access control policies with various delegation features into

security-critical systems. This is done with a flexibly dynamic adaptation strategy. An-

other runtime-update of security policy-based approach is presented by Elrakaiby et al.

[69]. The introduced DSL called Security@Runtime covers many of the security require-

ments of modern applications such as authorisation, obligation, and reaction policies.

Xiao [237]’s work is on adaptive and secure multi-agent systems. The authors adopting

the adaptive agent model to put forward a security-aware model-driven mechanism by

using an extension of RBAC model.

MDS for Secure SOA: Many MDS approaches focus on securing service-oriented

systems (SOSs). Gilmore et al. [86] show how services, service compositions, and non-

functional properties can be modelled using their self-developed UML profile and its

extension. They address non-functional properties in general where security is considered

with performance and reliable messaging. The models are the input for the framework

VIATRA14 to derive deployment mechanisms using MMT and MTT. Wada et al. [233]

also address non-functional aspects in SOA with a MDD framework and tool support.

Their work is empirically evaluated to show the improvement in the reusability and

maintainability of service-oriented applications. More specifically to integrate security-

related non-functional aspects in the development of services, Gallino et al. [83] present

their MDS solution using multiple domain-specific models independently addressing

security aspects. Hoisl et al. [96, 97] propose an MDS approach based on SoaML for

specification and the enforcement of secure object flows in process-driven SOA. [153,

152] introduce a security metamodel for SOA. This metamodel is the base for their

MDS framework that allows modelling of security requirements in system design models.

Going further than modelling, Nakamura et al. [179] propose an MDS tooling framework

to generate Web services security configurations. In the same line, intermediate model

structure is introduced by Satoh et al. [207, 208] to simplify the transformation rules

for transforming a security policy written in WebService-SecurityPolicy into platform-

specific configuration files.

Aspect-Oriented Modelling in MDS: AOM techniques would be ideal for MDS

with fully separation of concerns support. With AOM, security concerns can be mod-

elled separately, and then automatically composed into primary models. All of the

reviewed MDS approaches in this category except [200, 243] tackle multiple security

concerns. These approaches aim at dealing with multiple security concerns as one would

expect from any AOM approach. Georg et al. [85] propose a methodology that allows

not only security mechanisms but also attacks to be modelled as aspect models. The

attacks models can be composed with the primary model of the application to obtain

14http://www.eclipse.org/viatra/

http://www.eclipse.org/viatra/
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the misuse model. The authors then use the Alloy Analyser 15 to reason about the

misuse model. If the misuse model shows that the application is compromised, some

security mechanism must be incorporated into the application. The Alloy Analyser is

used again to verify that the secured application model is now resilient to the attack.

Mouheb et al. [171] and Mouheb et al. [172] develop a UML profile that allows speci-

fying security mechanisms as aspect models. The aspect models often go together with

their integration specification. Their approach allows security aspects to be woven au-

tomatically into UML design models (class diagrams, state machine diagrams, sequence

diagrams, and activity diagrams) [171]. In [172], the authors present a full security

hardening approach, from design to implementation. Not only restricted to security

aspects, Sánchez et al. [204] propose a MDD approach for all early aspects, including

security. The difference with other approaches is that they focus on aspect-oriented re-

quirements specifications (models). These aspect-oriented requirements models are then

automatically transformed into aspect-oriented architecture models. Not dealing with

multiple security concerns, Ray et al. [200] introduce an AOM approach for addressing

access control. Specifically, RBAC aspects can be modelled using parameterised UML

models as patterns. This allows uniformly incorporate pervasive access control func-

tionality into a design. The woven model can be analysed to check the correctness of

incorporation. Zhu et al. [243] propose a model-based aspect-oriented framework for

building intrusion-aware software systems. There, attack scenarios and intrusion detec-

tion aspects are modelled using an aspect-oriented UML profile. The intrusion detection

aspect models are used to automatically generate aspect-oriented codes. The aspect-

oriented codes are woven into the target systems using an aspect weaver to obtain the

intrusion-aware software system. Recently, Horcas et al. [98] propose a hybrid AOSD

and MDE approach for automatically weaving a customised security model into the

base application model. By using the Common Variability Language (CVL) and atl,

different security concerns can be woven into the base application in an aspect-oriented

way, according to weaving patterns. However, inter-security concern relations have not

been taken into account.

MDS for Access Control: Section 3.5.1 shows that access control problem got the

most attention from the MDS community. We discuss here some representative MDS

approaches that specifically address access control. Ahn et al. [6] propose a framework for

representing security model, specifying and validating security policy, and automatically

generating security enforcement codes. This framework leverages the MDD approach to-

gether with a systematic tool to build secure systems. Also presenting a MDD approach

for access control, Fink et al. [78] aim at developing access control policies for distributed

systems using MOF and UML profiles. However, this approach does not work well with

15http://alloy.mit.edu

http://alloy.mit.edu


www.manaraa.com

Chapter 3. An Extensive Systematic Review of Model-Driven Security 58

module-based system like systems based on SOAP 16. Kim et al. [128] present a feature-

based approach that enables systematic configuration of RBAC features for developing

customisable access control-based enterprise systems. Feature modelling is used for ef-

fectively capturing the variabilities of the RBAC. UML models are used for specifying

the static and behavioural properties of RBAC features. The composition method in

their approach is used for building RBAC configuration, which also serves as a verifi-

cation point for correctness of composition. Aiming at a full design-to-testing MDD

process, Mouelhi et al. [169] introduce a generic access control metamodel. The generic

access control policy model specified by the metamodel is automatically transformed

into security policy for the XACML platform, and integrated in the target application

using aspect-oriented programming. Model-based mutation testing makes the access

control enforcement quantitatively testable. Pavlich-Mariscal et al. [198] propose a MD

framework with a set of composable access control features that can be tightly integrated

into the UML. At the code level, access control is map to the policy code which realises

access control diagrams and features, and the enforcement code, to restrict access to

methods based on information of the policy code. The degree of traceability of map-

pings is assessed. Recently, Schefer-Wenzl et al. [209] propose a full MDD approach for

specifying and enforcing break-glass policies in process-aware information systems. By

tackling a complex security exception handling mechanism like break-glass policies with

MDS, this work shows developing DSLs for specific security concerns are a good way to

capture well the semantics of these concerns. Based on that, a typical MDD process can

be developed for derive security from specification to enforcement with tools support.

Bertolino et al. [35] even go further in terms of tools support by providing a toolchain

for designing, generating. and testing access control policies. This toolchain is the result

of integrating specific tools for specific stages of the development cycle that have been

developed in a collaborative research network. The research around UMLsec has also

resulted in various tools support but not yet systematically formed a tool chain.

Miscellaneous: Neisse et al. [180] present one of few MDS approaches about usage con-

trol, the next generation of access control. Consisting of authorisations and obligations,

high-level usage control policies are specified considering an abstract system model and

automatically refined with the help of policy refinement rules to implementation-level

policies. The work by Elrakaiby et al. [69] mentioned above can also be categorised as

usage control. In the domain of securing embedded systems, the approach we reviewed

is by Eby et al. [68]. The authors propose a framework to incorporate security mod-

elling into embedded system design. Their security analysis tool is capable of analysing

the flow of data objects through a system and identifying points that are vulnerable

to attack. Not restricted to a particular application domain, ModelSec by Sánchez

16http://www.w3.org/TR/soap/

http://www.w3.org/TR/soap/
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Figure 3.8: Trend of MDS publication

et al. [203] can deal with multiple security concerns in an integrated fashion, including

privacy, integrity, access control, authentication, availability, non-repudiation, and au-

diting. ModelSec supports defining and managing security requirements by building

security requirements models for an application from which operational security models

can then be generated. Recently, Busch et al. [55] present an MDS approach specific

for securing web applications, tackling multiple security concerns. The graphical, UML-

based Web Engineering (UWE) language is extended for specifying security concerns in

web applications. Moreover, the approach is mapped to an iterative development cycle

from requirement specification to testing and deployment with tools support.

3.5.4 Trend analysis of MDS approaches

In terms of publication, we can see in Fig. 3.8 there was a peak time for primary

MDS publications in 2009. As we mentioned, the primary MDS approaches were first

introduced from 2002. From 2002-2008, more primary MDS papers were published at

conferences than journals. The number of primary MDS papers published at conferences

were going up until 2007. In 2008, the number of primary MDS papers published at

conferences decreased. One of the reasons could be primary MDS papers were under

submission to journals. In 2009, there was a peak number of primary MDS papers

published in journals. After the peak in 2009, the trend of primary MDS publications

looks more stable for the period 2010-2014. From 2010 to 2014, less primary MDS

papers were published than the previous 5-year period (2005-2009). However, the trend

of publishing primary MDS papers in the period 2010-2014 seems more stable.
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Figure 3.9: Trend of security concerns addressed by MDS studies

Similarly to the trend of publications, the trend of how security concerns have been

addressed also has a peak time in 2009. Fig. 3.9 shows that, nearly all the time

reviewed, authorisation is the concern that has been addressed the most. Only in 2009,

confidentiality was tackled by more primary MDS papers than authorisation. The

other concerns were always less focused than authorisation and confidentiality all the

time reviewed. Until 2014, authorisation looks like still being addressed the most by

the MDS research community. MDS researchers should pay more attention to the less

tackled security concerns, and should aim at a solution addressing multiple security

concerns simultaneously.

The trends of how MDE artefacts leveraged in the primary MDS approaches look well

coupled with the number of primary MDS publications. The line of each artefact is very

close to the others (see Fig. 3.10). This means that most primary MDS approaches

did leverage the key artefacts of MDE in secure systems development. It is easily

understandable that as long as we clearly define how an approach can be considered

an MDS approach, most of the key MDE artefacts have to be leveraged in an MDS

approach. This trend should hold in the future as well.

In terms of publication venues, Information and Software Technology (IST) journal and

ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-

tems (MODELS) are so far the most popular venues for publication of primary MDS

papers. Fig. 3.12 shows that at least 10 primary MDS publications have been found in

each of these two venues. The next two attractive venues for primary MDS papers are

ARES (security conference), and SoSym (MDE journal). Primary MDS papers were

also published at some other general journals (Journal of Universal Computer Science) or

domain specific conferences (IEEE International Conference on Web Services). The pro-

ceedings of Tutorial Lectures on Foundations of Security Analysis and Design (FOSAD)

contains some significant primary MDS approaches as well. In general, except ARES
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Figure 3.11: Number of papers for the journals with the most MDS papers found in
this review

and CSJ, conferences and journals specific for security do not seem to be the common

venues for MDS publications yet.

3.6 Threats to validity

We discuss the threats to validity of this SLR according to the lessons learned on validity

in SLRs [129] and our own experience.
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3.6.1 The search process

To maximise the relevant articles returned by the search engines, we kept the search

string not too specific but still reflecting what we wanted to search for. Moreover, the

search string was used for searching not only in the titles, abstracts but also in the

full text of an article. Only the search engine of Web of Knowledge (ISI) does not

provide the option for searching in full text. This limitation could affect the search

results returned by ISI. To minimise the possibility of missing relevant papers, we kept

our search string generic so that we cover as many relevant papers as possible (more

than 10 thousands relevant papers found). To complement for the automatic search, we

have also conducted the manual search on relevant journals and proceedings of relevant

conferences. Then, to mitigate the limitations of automatic and manual searches, we

have adopted the snowballing strategy. Even though only three out of five steps of

the snowballing strategy were adopted, those are the key steps. Moreover, we already

conducted the extensive automatic and manual searches which covered thousands of

relevant publications, and resulted in a large set of primary MDS papers. That is why

conducting only three key steps of snowballing strategy would be fair enough. Another

possible threat is that we did not extensively search for books related to MDS. However,

we did include the option to also search for book chapters while performing automatic

search. In fact, we found out some book chapters that got into our final selected papers

for data extraction, e.g. [90], [106].
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3.6.2 Selection of primary studies

A large part of the search and selection process was conducted by the first author.

Some publications might have been missed. To mitigate this risk, every doubtful or

”borderline” publication was not dismissed in the first place but rather being cross-

checked and discussed by all the reviewers. Additionally, our clearly predefined review

protocol with inclusion and exclusion criteria helped to reduce the reviewers’ bias in the

selection of primary studies.

The results of this SLR papers are based on the data extracted and synthesised from

the selected MDS studies. Note that we have applied the citation criterion to estimate

the quality and impact factors of the selected primary MDS studies. Even though this

criterion is not too strict, applying it caused a number of MDS papers not to be included.

We realised that some of the excluded MDS papers are related to the included primary

MDS studies. To mitigate the risk of missing some important data of the primary MDS

studies, we put back the excluded MDS papers that are related to the primary MDS

studies. In total, we re-selected 15 MDS papers as the ”sidekick” papers to be included

in the final set for data extraction.

Some key selection criteria in this SLR are time-bound. The citation criterion for select-

ing primary MDS papers is based on the numbers of citations provided by Google Scholar

engine. The selection of venues for conducting manual search is based on Microsoft Re-

search ranking website. Google citations will change from time to time. Similarly,

rankings of conferences and journals will change. Those time-bound metrics influence

the reproduction of this SLR. So, some papers which were not selected as primary MDS

papers because of the citation criterion would satisfy this criterion later on.

3.7 Related work

In [118], the authors present a survey on MDS. They propose an evaluation based

on the work of Khwaja and Urban [120]. The study revealed that approaches that

analyse implementations of modelled systems are still missing. Due to the fact that

implementations are not generated automatically from formal specifications, verification

of running code is reasonable. The main drawback of [118] is that it is not a SLR.

As a result, there are some well-known approaches that are missing in [118], such as

SecureUML [32].

In [27], Basin et al. went through a “Decade of Model-Driven Security” by presenting a

survey focusing on their specific MDS approach called SecureUML. The authors claim
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that MDS has enormous potential, mainly because Security-Design Models provide a

clear, declarative, high-level language for specifying security details. The potential is

even more, when the security models rely on a well-defined semantics. The main draw-

back of [27] is that it only considers the work around SecureUML.

[227] is a survey of model-based security methodologies for distributed systems. The pa-

pers surveyed in [227] are not only about model-driven methodologies but also architecture-

driven methodologies, pattern-driven methodologies, and agent-driven methodologies.

Thus the focus is not specifically MDS but rather security engineering for distributed

systems in general. Our review explicitly targets MDS methodologies as described in

the previous sections.

In [144], five well-known MDS approaches, i.e. UMLsec, SecureUML, Sectet, Mod-

elSec, and SecureMDD, are summarised, evaluated, and discussed. These five MDS

approaches are also confirmed in this chapter. It can be seen that our SLR results

are complementary to the contributions of the normal survey papers, e.g. [144], [227].

Those survey papers perform in depth analysis of some significant MDS approaches by

elaborating one after another. But our SLR performs a SLR in both width and depth

of MDS research which result in not only (evidently) significant MDS approaches but

also emerging considerable MDS approaches. It is the first MDS literature review that

systematically considers all relevant publications using explicit evaluation and extrac-

tion criteria. Furthermore, our SLR provides a detailed look at all the key artefacts of

any MDS approaches such as modelling techniques, security concerns, how model trans-

formations employed, how verification and validation methods used, and case studies,

and application domains. We also provide a trend analysis for the development of MDS

research area.

[103] is closer to our SLR. The authors propose three research questions with the goal

to determine if the current MDS approaches focus on code generation and/or having

empirical studies. The study shows that there is a need for more empirical studies

on MDS (none exists), and that standardisation is key to achieve the objectives of

MDD/MDA (which are increased portability and interoperability). However, [103]

presents several drawbacks and differences from our work. First, their search strategy

is very limited compared to our three-pronged search strategy. Second, concerning the

SLR protocol, no evaluation criteria and data extraction strategy are given. Moreover,

their exclusion criteria are very narrow. Consequently, the authors exclude significant

papers in the field, e.g. UMLsec papers. Also, the authors exclude AOM approaches,

because they consider that AOM does not consider security aspects as specific aspects

(i.e. different from other aspects). Our work covers all the limitations of [103] and

provides much more extensive SLR on the topic.



www.manaraa.com

Chapter 3. An Extensive Systematic Review of Model-Driven Security 65

3.8 Conclusions

We have presented an extensive systematic literature review on the model-driven ap-

proaches for developing secure systems. The SLR is based on a rigorous three-pronged

search process, which combined automatic search and manual search with snowballing

strategy. Using 9 clearly predefined selection criteria, 108 MDS papers have been strictly

selected, and then reviewed. From these primary MDS papers, we extracted and syn-

thesised the data to answer three research questions: (RQ1) How do these approaches

support the development of secure systems? (RQ2) What are the limitations? (RQ3)

What are open issues to be further investigated?

(Our answers to RQ1.1) The results show that most MDS papers focus on authorisation

(75 %) and confidentiality (42 %) while only few publications address other security

concerns like integrity, availability, and authentication. Moreover, very few MDS papers

deal with multiple security concerns simultaneously in a systematic way, e.g. only 9 %

address authentication, authorisation, and confidentiality together. (RQ1.2) Most of the

approaches try to separate security concerns from core business logic, but only few weave

security aspects into primary models. The UML profile mechanism is often used for the

definition of security-oriented DSLs, but some approaches have introduced non-UML

based DSLs. It can be understandable that standardised, common UML models are

broadly used by MDS approaches. Anyway, defining DSLs plays a key role in MDS

because that way allows better capturing the specific semantics of security concerns. Still

few security modelling languages are introduced with a thorough semantic foundation,

which is needed for automated formal analyses. Most of the MDS papers use only

structural models. Using solely one type of models could not be enough to be able to

express multiple security concerns simultaneously. (RQ1.3 and RQ1.4) In MDS, MMTs

and MTTs are often used but implementation details and tools are not often provided.

Many examined MDS papers do not specifically provide any implementation information

about MMTs. These papers just provide mapping rules for transforming models, or even

without clearly defined transformation rules/mappings. Among the transformation tools

provided or mentioned, not only general-purpose MMT and MTT tools but also many

ad-hoc, specific (Java-based) tools are used. MMTs were mentioned in most of the

identified MDS papers (74 %), but more than half of the papers do not provide detailed

information on the used languages, tools, or transformation rules (56 %) and only a

few mention standard transformation languages (19 %), such as ATL or QVT (RQ 1.4).

More specifically, MTTs were mentioned slightly less often (64 %) than transformations

to models and were used almost equally often to generate only security infrastructure (34

%) or also functional code (29 %). (RQ1.5) Most papers discuss illustrative examples or

academic case studies (67 %) but do not mention in-depth evaluations, e.g. industrial
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case studies (5 %), controlled experiments (2 %) or common benchmarks. (RQ1.6)

Although most papers do not mention a specific application domain there are domains

that are discussed more frequently, such as distributed or service-oriented systems (31

%) and data warehouses (19 %).

Our answers to RQ2 and RQ3 can be derived from the details given in the answers to

RQ1. (RQ2) More specifically, our SLR shows that many MDS approaches are limited

to a specific, isolated security concern, especially access control. In many cases, the

approaches are also too specialised to a certain application domain. Not only multiple

security concerns are less tackled, but also the inter-relations among security concerns

are rarely taken into account systematically in MDS approaches. Another important

limitation is the lack of rigorous evaluations of claimed benefits and capabilities of MDS

approaches. Last but not least, few complete tool chains to automate (most of) the MDS

development process have emerged, but are very rare, and not yet adoptable by industry.

(RQ3) All these findings urge for more attention from the MDS research community to

the less tackled security concerns, to the solutions that can deal with multiple security

concerns systematically. Leveraging Aspect-Oriented Modelling (AOM) techniques for

better ensuring the separation-of-concern in MDS approaches should be promoted more.

AOM could help to deal with multiple security concerns more systematically. Enhanc-

ing separation-of-concern in the development process, between engineering security and

engineering main system functionalities, is important especially for developing complex

software systems. Developing tool chains (based on MMTs and MTTs) to derive from

models to implementation code is an important part of future work.

Independent of our initial research questions, our SLR revealed five significant MDS

approaches that can be classified as more mature than the rest. But we also identified

various emerging/less common MDS approaches that respond to recent developments,

such as cloud-based environments. With trend analyses for the last twelve years we

showed that there was a clear peak of publications on MDS in 2009, which mainly

because of an increase in journal publications. Finally, our analysis of publication venues

showed that the journal on Information and Software Technology and the MODELS

conference published most of the identified MDS papers.

In future work, our SLR protocol and the list of finally selected MDS papers could

be used for a follow-up SLR of MDS to identify papers that are published after this

review. A reviewer would need to check again the citation criterion for those primary

MDS papers using up-to-date citation numbers. After obtaining a subset of MDS

papers from the original set, only forward snowballing would have to be conducted for

this subset as backward snowballing cannot reveal newly published papers in references

of old papers. After reviewing and selecting a new set of MDS papers from the result
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of forward snowballing, the full snowballing process could be performed on it to obtain

a new final set. For the newly found papers in this final set, data extraction would have

to be performed in order to obtain up-to-date results on new MDS publications.
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This chapter presents an integrated framework (namely MDS-MoRe) which consists of

different methodologies and techniques for addressing the three main open issues men-

tioned in Chapter 1. First, an overview of Model-Driven Security with Modularity and

Reusability (MDS-MoRe) is given in Section 4.1. Section 4.2 presents the main stages

of MDS-MoRe. Then, two different MDS approaches in the MDS-MoRe framework

are presented in Section 4.3 and Section 4.4 respectively. Finally, we summarise all the

main points of this chapter in Section 4.5.

4.1 Introduction

For addressing the three main open issues of MDS research mentioned in Chapter 1, a

comprehensive MDS study called MDS-MoRe (Model-Driven Security with Modularity

and Reusability) is proposed in this chapter. The MDS-MoRe study aims at tackling

the three main open issues of MDS research above as well as promoting modularity and

reusability. Taking into account security of complex systems makes the development of

these systems much more complex. As indicated in [21], “modularity is a concept that has

68
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proved useful in a large number of fields that deal with complex systems”. Thus, we want

to promote modularity in developing secure systems, from modelling till secure code gen-

eration and testing. On the other hand, design reuse has been long recognised as offering

better payoff than code reuse [199]. To address multiple security concerns systemati-

cally, we want to promote a systematic reuse process of interrelated security patterns

at the design level. Therefore, it is necessary for the proposed MDS-MoRe to leverage

existing well-established techniques as well as develop relevant approaches to support

model-driven development of secure systems with modularity and reusability. For that,

(security) modelling techniques, model composition/transformation techniques, security

(patterns) engineering techniques, and security testing techniques have to be analysed,

leveraged, or developed to achieve the aim of MDS-MoRe.

In general, MDS-MoRe consists of two different MDS approaches. The former (see

Chapter 5) develops a DSL for modelling a specific, complex security concern, i.e. del-

egation. Customised model-to-model transformations, code generation, and testing are

also introduced to deal this specific, complex security concern from modelling till testing.

The latter (see Chapter 6) leverages an AOM technique (RAM) to develop a System

of Security design Patterns which can be used in systematically addressing multiple se-

curity concerns in developing secure systems. In the following section, the framework

of MDS-MoRe study is described in detail. Moreover, the core phases of each main

MDS approach such as modelling, model composition, code generation, testing, their

purposes and their relations are presented.

4.2 The Model-Driven Framework of MDS-MoRe

Fig. 4.1 shows two different MDS approaches in the MDS-MoRe framework: one on

the left hand side for dealing with a specific, complex security concern with extensive

semantic, and another one on the right hand side for dealing with multiple security

concerns systematically. The whole framework can roughly be divided into the following

phases:

• Modelling: The task of this phase is to specify security concern(s) by using either

domain-specific models or UML models. One important aspect of this phase is

to really enforce separation of concerns between the security concerns and the

core business logic of systems. Security concerns are modelled separately into

security-oriented models. In the later phases, the security-oriented models will be

integrated into the base model containing the business logic of the system to make

the system secure.
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• Composing: It is the process of transforming, weaving the security-oriented mod-

els into the base system model. The output of this phase is the composed model

called security-enforced model.

• Testing: In this phase, test cases can be generated to evaluate the validation of

the generated secure code. Testing techniques such as mutation analysis can be

leveraged to improve the set of test cases.

• Code Generation/Implementation: From the security-enforced model, (par-

tial) code generation can be performed to generate (the skeleton of) secure code.

Each MDS approach is presented separately according to these phases in the following

sections.

4.3 MDS with Modularity

On the left hand side of Fig. 4.1, an MDS approach with modularity is presented. The

framework is for dealing with a specific but complex security concern, i.e. delegation in

access control management. Thus, a DSL for modelling delegation has been developed

for capturing the complex semantics of delegation in access control management. The

delegation models, access control models, and business logic models of a system can be

specified separately. In fact, the target systems of this work are adaptive component-

based systems in which leveraging modularity would enable the secure systems to evolve

at runtime. On the other hand, mutation testing is employed for validating the im-

plementation of delegation in access control management of the resulting system. The

details of this MDS approach are presented in Chapter 5. The main ideas in each phase

are described as follows, from modelling till testing and code generation.

4.3.1 Domain-Specific Modelling of Security Concerns

Access control is a popular security concern that has been focused in a majority of

MDS studies as indicated in Chapter 3. So far, MDS studies mainly focus on static

definitions of access control policies, without taking into account the more complex,

but essential, delegation of rights mechanism. Delegation is a meta-level mechanism

for administrating access rights, which allows a user without any specific administrative

privileges to delegate his/her access rights to another user. As can be seen in Fig.

4.1, three DSLs have been developed for specifying access control, delegation and the

business logic as separate concerns. A specific DSL is developed for capturing the
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complex semantics of delegation in access control management. This DSL is an extension

of another DSL which can be used to specify a Role-Based Access Control (RBAC)

policy. Besides, the business logic of a target system is modelled by using the third DSL

capturing component-based architecture. The output of this phase is the delegation

policy model, the access control policy model, and the component-based architecture

system model.
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4.3.2 Transforming and Composing Models

Because of its complexity and relation to access control, delegation can be seen as a

“meta-level” mechanism which impacts the existing access control policies similarly as

an aspect can impact a base program. An ad-hoc MMT has been developed to trans-

form the access control policy model according to the delegation rules specified in the

delegation policy model. The result of this step is an active access control policy model

reflecting both delegation rules and active access control rules. Then, the active access

control policy model is transformed into a three-layer component based architecture

model. This model is integrated into the architecture model of the base system for

enforcing the security policy at the model level.

4.3.3 Testing

The meta-level characteristic together with the complexity of delegation itself make it

crucial to ensure the correct enforcement and management of delegation policy in a

system via testing. To this end, we adopt mutation analysis for delegation policies.

In order to achieve this, a set of mutation operators specially designed for introducing

mutants into the key components (features) of delegation is proposed. Test cases are

derived from the security policy (see Fig. 4.1). The mutation operators are used to

mutate the delegation policy and its enforcement which result in mutated code. The

mutated code is then used to evaluate and improve the quality of the set of test cases.

4.3.4 Code Generation

Last but not least, (partial) code generation is another automated step to ensure the

productivity of MDS in the secure systems development. From the security-enforced

architecture model, the (partial) source code of the secure system in the target im-

plementation platform can be generated. In fact, the DSLs are platform-independent.

Because our target secure systems are of type component-based architecture, we show

that the security-enforced architecture model can be used to generate components for

two different adaptive execution platforms, i.e. Kevoree and OSGi. More details can be

found in Chapter 5.

4.4 MDS with Reusability

On the right hand side of Fig. 4.1, another MDS approach promoting not only modu-

larity but also reusability based on AOM is presented. The approach is for addressing
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multiple security concerns systematically. The catalogs of security patterns are the most

accessible, well organised, documented resources of different security solutions for dif-

ferent security concerns, e.g. [72, 211, 220]. In our approach, we develop a unified

System of Security design Patterns (SoSPa) based on RAM. Our SoSPa metamodel

is an extension of RAM metamodel (see Fig. 4.1). The security pattern models, the

supporting RAM models, and the base system model are specified at the modelling

phase. At the composing phase, by using RAM weaver and a pattern refinement pro-

cess, security solution models are constructed and woven into the base system model.

The source code (skeleton) of the target system can be generated from the resulting

model (security-enforced model). Chapter 6 presents the details of this MDS approach.

The main ideas in each phase are described as follows.

4.4.1 Aspect-Oriented Modelling of Security Concerns

In SoSPa, security design patterns are collected, specified as reusable aspect models to

form a coherent system of them that guides developers in systematically addressing mul-

tiple security concerns. More precisely, our MDS framework allows selecting, refining,

composing security design patterns to systematically build security solution models, and

then automatically integrating them into a target system design. Other RAM models

and base system model are also specified in this phase.

4.4.2 Mapping and Weaving Models

In this phase, the mappings to integrate the newly built security solutions to a base

system model are defined. Once all the necessary mappings and constraints are resolved,

RAM weaver can execute the composition of the security solutions to a base system

model to obtain the security-enforced system model.

4.4.3 Testing

We have some inspiration from the approach proposed by Kobashi et al. [133] where

test templates could be introduced into the security design patterns for later validation

of their application. This idea has not been realised yet in the work presented in this

thesis. However, this is indeed a good point for future work.
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4.4.4 Code Generation

The (skeleton) of source code can be generated automatically from the security-enforced

model. This step is also supported by the RAM tool.

4.5 Summary

In this chapter, an integrated MDS framework with modularity and reusability, namely

MDS-MoRe, is proposed for supporting the development of secure systems. MDS-

MoRe is for addressing the three main open issues in the state of the art of MDS

research. Two different MDS approaches are integrated in MDS-MoRe. Each MDS

approach consists of the main MDS phases such as modelling, composing, testing, and

code generation. The former leverages DSM for addressing a specific and complex

security concern, i.e. delegation. The latter leverages UML, RAM, and a unified

System of Security design Patterns to systematically address multiple security concerns.

The details of these two MDS approaches can be found in Chapter 5 and Chapter 6

correspondingly.
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Among the variety of models that have been studied in a Model-Driven Security perspec-

tive, one can mention access control models that specify the access rights. So far, these

models mainly focus on static definitions of access control policies, without taking into

account the more complex, but essential, delegation of rights mechanism. Delegation is

a meta-level mechanism for administrating access rights, which allows a user without

any specific administrative privileges to delegate his/her access rights to another user.

This chapter gives a formalisation of access control and delegation mechanisms, and

analyses the main hard-points for introducing various advanced delegation semantics

in Model-Driven Security. Then, we propose a modular model-driven framework for 1)

specifying access control, delegation and the business logic as separate concerns; 2) dy-

namically enforcing/weaving access control policies with various delegation features into

75
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security-critical systems; and 3) providing a flexibly dynamic adaptation strategy. We

demonstrate the feasibility and effectiveness of our proposed solution through the proof-

of-concept implementations of different component-based systems running on different

adaptive execution platforms, i.e. OSGi and Kevoree.

5.1 Introduction

Software security is a polymorphic concept that encompasses different viewpoints (hacker,

security officer, end-user) and raises complex management issues when considering the

ever increasing complexity and dynamism of modern software. In this perspective, de-

signing, implementing, and testing software for security is a hard task, especially be-

cause security is dynamic, meaning that a security policy can be updated at any time

and that it must be kept aligned with the software evolution. As one of the key concerns

in software security, managing access control to critical resources requires the dynamic

enforcement of access control policies. Access control policies stipulate actors access

rights to internal resources and ensure that users can only access the resources they are

allowed to in a given context. A sound methodology supporting such security-critical

systems development is extremely necessary because access control mechanisms cannot

be “blindly” inserted into a system, but the overall system development must take access

control aspects into account. Critical resources could be accessible to wrong (or even ma-

licious) users just because of a small error in the specification or in the implementation

of the access control policy.

Several design approaches like [167] [32] have been proposed to enable the enforcement of

classical security models, such as Role-Based Access Control (RBAC) [77] [205]. These

approaches bridge the gap from the high-level definition of an access control policy

to its enforcement in the running software, automating the dynamic deployment of a

given access control policy. Although such a bridge is a prerequisite for the dynamic

administration of a given access control policy, it is not sufficient to offer the advanced

administration instruments that are necessary to efficiently manage access control. In

particular, delegation of rights is a complex dimension of access control that has not yet

been addressed by the adaptive access control mechanisms. User delegation is necessary

for assigning permissions from one user to another user. An expressive design of access

control must extensively take into account delegation requirements.

Delegation models based on RBAC management have been characterised as secure,

flexible and efficient access management for resource sharing, especially in a distributed

environment. Flexible means that different subjects for delegation should be supported,

i.e. delegation of roles, specific permissions or obligations. Also, different features of
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delegation should be supported, like temporary and recurrent delegation, transfer of

role or permissions, delegation to multiple users, multi-step delegation, revocation, etc.

However, the addition of flexibility for delegation must come with mechanisms to make

sure that the security policy of the system is securely consistent. And last but not least,

the administration of delegations must remain simple to be efficient. Thus, delegation

is a complex problem to solve and to our best knowledge, there has been no complete

approach for both specifying and dynamically enforcing access control policies by taking

into account various features of delegation. Having such an expressive security model

is crucial in order to simplify the administrative task and to manage collaborative work

securely, especially with the increase in shared information and distributed systems.

Based on previous work [167], in this chapter we propose a new Modular Model-Driven

Security solution to easily and separately specify 1) the business logic of the system

without any security concern using a Domain Specific Modelling Language (DSML) for

describing the architecture of a system in terms of components and bindings; 2) the “tra-

ditional” access control policy using a DSML based on a RBAC-based metamodel; 3)

an advanced delegation policy based on a DSML dedicated to delegation management.

In this third DSML, delegation can be seen as a “meta-level” mechanism which impacts

the existing access control policies similarly as an aspect can impact a base program.

The security enforcement is enabled by leveraging automated model transformation/-

composition (from security model to architecture model). Consequently, in addition to

[167], an advanced model composition is required to correctly handle the new delega-

tion features. In this chapter, we claim that delegation needs to be clearly separated

from access control because a delegation policy impacts access control rules. Therefore,

delegation and access control are not at the same level and should be separated. This

separation involves an advanced model composition approach to dynamically know, at

any time, what is the set of new access controls that has to be considered, i.e., the “nor-

mal” access control rules as well as the access control rules modified by the delegation

rules. From a more technical point of view, the security enforcement is dynamically done

via automated model transformation/composition (from security model to architecture

model) and the dynamic reconfiguration ability of modern adaptive execution platforms.

The remainder of this chapter is organised as follows. Section 5.2 presents the back-

ground on access control, delegation, and the security-driven model-based dynamic

adaptation. Formal definitions of our access control model and formalisms of advanced

delegation features are given in detail. Section 5.3 describes a running example. It will

be used throughout this chapter to show the diverse characteristics of delegation and

illustrate the various aspects of our approach. In Section 5.4, we first give an overview

of our approach. Then, we formalise our delegation mechanisms based on RBAC and

show how our delegation metamodel can be used to specify expressive access control



www.manaraa.com

Chapter 5. MDS with Modularity for Dynamic Adaptation 78

policies that take into account various features of delegation. Based on the delegation

metamodel, we describe our model transformation/composition rules used for transform-

ing and weaving security policy into an architecture model. This section ends with a

discussion of several strategies for dynamic adaptation and evolution of security policy.

Section 5.5 describes how our approach has been applied and evaluated in the develop-

ment of three different systems running on two different adaptive execution platforms.

Next, related work is presented in Section 5.6. Finally, Section 5.8 concludes the chapter

and discusses future work.

5.2 Background

This section introduces the main concepts which are used in this chapter. Firstly, formal

definitions of Access Control and Delegation policies are presented. Based on these

definitions, some key advanced delegation features are introduced formally. We keep all

the definitions here generic so that they can be mapped into different security models

like Role-Based Access Control (RBAC), Organization-Based Access Control (ORBAC)

[117], Discretionary Access Control (DAC) [135], etc. These definitions also provide the

basis for deriving mutation operators that can be used for testing delegation policy

enforcement [191]. Then, a brief summary of previous work on dynamic security policy

enforcement [167] is given.

5.2.1 Access Control

Access Control [101] is known as one of the most important security mechanisms. It

enables the regulation of user access to system resources by enforcing access control

policies. A policy defines a set of access control rules which expresses: who has the right

to access a given resource or not, and the way to access it, i.e. which actions a user can

access under which conditions or contexts.

Definition 5.1 (Access Control). Let U be a set of users, P be a set of permissions,

and C be a set of contexts. An access control policy AC is defined as a user-permission-

context assignment relation: AC ⊆ U × P × C. A user u is granted permission p in a

given context c if and only if (u, p, c) ∈ AC.

Additional details about contexts are given in next Sub-Section 5.2.2.1.
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5.2.2 Delegation

In the field of access control, delegation is a very complex but important aspect that

plays a key role in the administration mechanism [33]. A software system which supports

delegation, should allow its users without any specific administrative privileges to grant

some authorisations. There are two types of authorisation can be delegated: right and

obligation. This thesis studies right delegation, not obligation delegation. In this thesis,

“delegation” is understood as “right delegation”.
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Figure 5.1: A simple example of Delegation Process

Delegation of rights allows a user, called the delegator, to delegate his/her access rights

to another user, called the delegatee. By this delegation, the delegatee is allowed to

perform the delegated roles/permissions on behalf of the delegator [61]. The delegator

has full responsibility and accountability for the delegated accesses since he/she provides

the accesses to the resources to other users, who are not initially authorised by the access

control rules to access these resources. The basic concept of delegation is presented in

Figure 5.1. In this example, Alice (Secretary) and Jane (Librarian) have access to the

resources of LMS with their personal rights, i.e. Alice as a secretary can add new books,

and create borrower account, while Jane as a librarian can consult borrower account.

For some reason, Alice wants to delegate her permission of creating borrow account to

Jane. As described by the arrow from Alice to Jane in Figure 5.1, Alice (delegator) is

delegating the permission of “create borrower account” to Jane (delegatee). Once Alice

has been delegating this permission to Jane, it is added to the access rights of Jane. By
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this delegation, Jane can create borrower account while being delegated by Alice on this

permission.

A delegation policy can be considered as an administration-related security policy that

is built on top of an access control policy. It is composed of delegation rules that can

be specified at two levels: master-level and user-level. Basically, a delegation policy is

two-fold:

1. It specifies who has the right to delegate which permission (for accessing to a given

resource/action/subject) to whom, and in which context. We call this kind of rule

master-level delegation rule as such a rule is normally defined by security officers. For

example, a security officer can define a rule to specify that the head of a department

at a university can only delegate the permission of updating personnel accounts to a

professor.

Definition 5.2 (Master-Level Delegation Policy). Let U be a set of users, P be a set

of permissions, and C be a set of contexts. A master-level delegation policy MLD is

defined as a user-user-permission-context assignment relation: MLD ⊆ U × U × P ×C

with the following meaning. A delegation of a permission p from a user u1 to a user u2

in a given context c is allowed if and only if (u1, u2, p, c) ∈MLD.

2. It specifies who delegates to whom which permission, and in which context. We call

this kind of rule user-level delegation rule as these rules are mostly defined by normal

users. Note that user-level delegation rules must conform to master-level delegation

rules. For example, Bill (the head of department) delegates his permission of updating

personnel accounts to Bob (a professor) during his absence.

Definition 5.3 (User-Level Delegation Policy). Let U be a set of users, P be a set of

permissions, and C be a set of contexts. A user-level delegation policy ULD is defined

as a user-user-permission-context assignment relation: ULD ⊆ U ×U ×P ×C with the

following meaning. A user u2 has a permission p by delegation from a user u1 in a

given context c if and only if (u1, u2, p, c) ∈ ULD. It can be seen that all the delegations

in ULD conform to the rules defined in the MLD. In other words, every delegation at

the user-level can only be created if it conforms to the delegation rules defined at the

master-level.

5.2.2.1 Context

A context is a condition or a combination of conditions in which an access control/del-

egation rule is active, i.e. enforced in the running system. Cuppens et al. discuss five

different kinds of contexts in [63]. These kinds of contexts include temporal context,
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spatial context, user-declared context, prerequisite context, and provisional context.

Temporal delegation is delegation within a time constraint, for example delegation is

active for two days, or delegation is active for the time the delegator is on vacation. The

spatial context relies on the delegator/delegatee’s location, e.g. a delegated permission

is only active when the delegatee is at office. User-declared context is related to the pur-

pose of the delegator/delegatee, e.g. a delegator may state that his/her delegatee cannot

further delegate his/her permissions to someone else. Prerequisite context allows dele-

gation when some precondition is satisfied and the provisional context depends on the

previous actions that delegator/delegatee has performed on the system. Moreover, it is

possible for a security rule to have a complex context, which is a composition of contexts.

Our security model supports context composition using conjunction &, disjunction ⊕,

and negation .̄

Note that every access control rule and delegation rule defined in this chapter is always

associated with a context c. By default, if not specified explicitly, a context c is at least

composed of a condition, called Default, i.e. always true.

5.2.3 Advanced Delegation Features

Delegation is a powerful and very useful way to augment access control policy admin-

istration. On one hand, it allows users to temporarily modify the access control policy

by delegating access rights. By delegation, a delegatee can perform the delegated job,

without requiring the intervention of the security officer. On the other hand, the delega-

tor and/or some specific authorised users should be supported to revoke the delegation

either manually or automatically. In both cases, the administrative task can be sim-

plified and collaborative work can be managed securely, especially with the increase in

shared information and distributed systems [5]. However, the simpler the administrative

task can be, the more complex features of delegation have to be properly specified and

enforced in the software system. To the best of our knowledge, there is no approach for

both specifying and dynamically enforcing access control policies taking into account all

delegation features like temporary delegation, transfer delegation, multiple delegation,

multi-step delegation, etc.

In this section, we define the most well-known complex delegation features and formally

specify them w.r.t. the definitions of access control and delegation policies. In the

following definitions, we use pre, body, and post to respectively specify the state of the

policy before changing, the state while it is being changed by the function (the delegation

rule is being enforced), and the state after changing.
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5.2.3.1 Monotonicity of Delegation

Monotonicity of delegation refers to whether or not the delegator can still use the permis-

sion while delegating it [61]. If the delegator can still use the permission while delegating

it, the delegation is called grant delegation. Of course, the delegatee can use the permis-

sion while it is delegated to him. This is monotonic because available authorisations (in

the set AC) are increased due to successful delegation operations. Again, note that every

delegation can only be performed if and only if it satisfies the master-level delegation

policy.

Definition 5.4 (Grant Delegation). grantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈MLD

body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end

post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Vice versa, if the delegator can not use the permission while delegating it, the dele-

gation is called transfer delegation. As such, this is non-monotonic because available

authorisations (in AC) are not increased due to successful delegation operations.

Definition 5.5 (Transfer Delegation). transferDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈MLD

body AC := AC \ {(u1, p, c)}; AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)}
end

post (u1, p, c) /∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

5.2.3.2 Temporary Delegation

This is also a very common feature of delegation needed by users. When revocation is

handled automatically, the delegation is called temporary. In this case, the delegator

specifies the temporal conditions in which this delegation applies: only at a given time,

after or before a given time, or during a given time interval. The temporal conditions

may correspond to a day of the week, or to a time of the day, etc. If the temporal

context is not used, the delegation needs to be revoked manually.

Definition 5.6 (Temporary Delegation). Let c be a given context of a delegation (either

grant delegation or transfer delegation). A delegation is specified as temporary if its

context c is associated with a time constraint. The delegation will only be active while

the time constraint is satisfied.

For example, if the context is vacation period, a delegator Bill could have an associated

delegation rule with the following context:
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c := c&vacation period(startDate, endDate)

where vacation period(startDate, endDate) : −
startDate ≤ endDate ∧ afterDate(startDate) ∧ beforeDate(endDate)

Here, afterDate(date) returns true iff date is equal or later than the current date.

Similarly, beforeDate(date) returns true iff date is equal or earlier than the current

date.

5.2.3.3 Multiple Delegation

A permission can be delegated to more than a delegatee at a given time. However,

the number of times that a permission is concurrently delegated have to be controlled.

Multiple delegation refers to the maximum number of times that a permission can be

delegated at a given time.

Definition 5.7 (Multiple Delegation). Let Nm be the maximum number of times that

a permission can be concurrently delegated. Nm is predefined by the security officer.

The number of concurrent delegations in which the same role or permission is delegated

at a given time, in a given context can not exceed Nm.

We introduce a counting function to count the number of delegations of a permission

which is delegated by a delegator in a given context. The number returned by this

function is always updated according to the change in the delegation policy, i.e. the

number of delegation rules related to permission p.

countDelegation(u, p, c) := |{(u, v, p, c) | ∀v ∈ U : (u, v, p, c) ∈ ULD}|

If the number of concurrent delegations of the same permission at a given time, in a

given context has not exceeded Nm, then this permission is still allowed to be delegated.

grantDelegation(u1, u2, p,

c&countDelegation(u1, p, c) < Nm) : − pre (u1, p, c) ∈ AC∧(u2, p, c) /∈ AC∧(u1, u2, p, c) ∈
MLD ∧ countDelegation(u1, p, c) < Nm

body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end

post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

5.2.3.4 Multi-step Delegation

This characteristic refers to the maximum number of steps (Ns, normally specified by a

security officer) that a permission p can be re-delegated, counted from the first delegator
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of this permission. So if Ns = 0 that means the permission p can not be re-delegated

anymore.

Definition 5.8 (Multi-step Delegation). Let Ns ≥ 0 be the maximum number of steps

that a permission p can be re-delegated. A permission p can only be delegated iff Ns > 0.

First, let us define a helper function that returns the number of times a permission p

is re-delegated in a given context c. stepCounter(u0, p, c) := Ns where u0 is the first

delegator of p in the delegation chain: u0 delegates p to ... in a given context c; ...

re-delegates p to u1 in context c; and u1 re-delegates p to u2 in context c. Here, “...” is

the users in the middle of the delegation chain, u1 is the current last delegatee of this

chain, and u2 is the next delegatee if stepCounter(u1, p, c) ≥ 1.

If there exists a predefined maximum number of steps Ns for a permission p as described

above, the delegation is specified as following.

grantDelegation(u1, u2, p, c

&stepCounter(u1, p, c) ≥ 1) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈MLD ∧ stepCounter(u1, p, c) ≥ 1

body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)}; stepCounter(u2, p, c) :=

stepCounter(u1, p, c)− 1 end

post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

5.2.3.5 Delegation Revocation

Delegation supports a revocation feature in which a delegation can be revoked and

permissions are returned back to the original user.

Definition 5.9 (Delegation Revocation). Delegation revocation is the ability for any

delegation can be manually revoked by authorised users.

The revocation of a grant delegation means to deny access of the delegatee to the dele-

gated permission.

Definition 5.10. revokeGrantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

body AC := AC \ {(u2, p, c)}; ULD := ULD \ {(u1, u2, p, c)} end

post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD

The permission to be revoked is deleted from the access rights of the delegatee. To

revoke a transfer delegation, it is not only to deny access of the delegatee to the delegated
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permission but also to re-grant access to the delegator who is temporarily not having

this access.

Definition 5.11. revokeTransferDelegation(u1, u2, p, c) : −
pre (u2, p, c) ∈ AC ∧ (u1, p, c) /∈ AC ∧ (u1, u2, p, c) ∈ ULD

body AC := AC \ {(u2, p, c)}; AC := AC ∪ {(u1, p, c)}; ULD := ULD \ {(u1, u2, p, c)}
end

post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD

We have presented formal definitions of access control, delegation, and various delegation

features. These definitions are generic (at the conceptual level) so that they can be

mapped into different security models like RBAC, ORBAC, DAC, etc. Section 5.4

shows how these formal concepts can be implemented (based on RBAC) using MDE

techniques.

5.2.4 Security-Driven Model-Based Dynamic Adaptation

Figure 2: Implicit security mechanism

The second kind of hidden mechanisms is the explicit
mechanisms, which are implemented within some portions
of the application code that is not documented. Figure 3
shows an example of these explicit mechanisms:

1 public void borrowBook(Book b, User user) {
2 // visible mechanism , call to the security

policy service
3 SecurityPolicyService.check(user ,
4 SecurityModel.BORROW_METHOD ,Book.class ,

SecurityModel.DEFAULT_CONTEXT);
5
6 // do something else
7
8 // hidden mechanism
9 i f (getDayOfWeek().equals(‘‘Sunday ’’) ||

10 getDayOfWeek().equals(‘‘Saturday ’’)) {
11 // this is not authorized throw a business

exception
12 Throw new BusinessException(‘‘Not allowed to

borrow in week -ends’’);
13 }
14 }

Figure 3: Explicit security mechanism

In the body of the method, after the PEP call to the
PDP, a new check is done which forbids borrowing books
during week-ends. If the policy has to be modified to allow
borrowing books during week-ends, this hidden mechanism
should be located and deleted.

2.3 Discussion
Both the explicit and the implicit mechanisms reduce the

flexibility of the system. They are inevitable since they are
due to the way the standard architecture (PDP+PEP) is im-
plemented as illustrated through the examples. In fact, the
problem is not due to the architecture itself. It is caused
by the way applications are developed by separating the
process of implementing the security mechanism (the PDP
and the PEP) from the application logic implementation.
This application logic part should be implemented by tak-
ing into account the access control policy, so that this policy
is not hard-coded in the business logic. For these reasons,
we clearly need to take into account access control during
the modeling and more importantly the deployment of se-
cured systems. This is the main contribution of this work,
which involves providing a complete process that includes
access control throughout the modeling and the specially
deployment processes.

3. OVERVIEW
In commercial and government environments, any change

to the security policies normally requires impact assessments,
risk analysis and such changes should go through the RFC
(Request for Change) process. However, in case of urgency
(crisis events, intrusion detection, server crashes, interop-
erability with external systems to deal with a critical situ-
ation), the adaptation of a security policy at runtime is a
necessity. This adaptation may or may not have been al-
ready predicted or planned.

The proposed approach and the combination of composi-
tion and dynamic adaptation techniques shown in Figure 4
show how the security policy can be adapted conforming to
a defined adaptation plan or in an unplanned way. The secu-
rity adaptation mechanisms we propose deal with the chal-
lenging issue of how to provide running systems supporting
planned and unplanned security policy adaptations. The in-
puts of the process are two independent models: the business
architecture model of the system and the security model.
These two models are expressed in different domain-specific
modeling languages: the core business architecture with an
architecture modeling language (Section 4.2) and the secu-
rity policy with an access-control language (Section 4.1). By
dynamically composing the security model with the archi-
tecture model, the approach allows adapting the application
security policy according to pre-defined adaptation rules but
also to cope with any unplanned changes of the security
model.
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Figure 4: Overview of the proposed approach

The adaptive security model contains a set of access con-
trol rules and a description of the context in which these
rules apply. At runtime, depending on the context infor-
mation coming from the system the appropriate set of rules
has to be chosen. This is the reasoning shown as (1) in
Figure 4. The reasoning phase processes the security model
based on the context information coming from the system to
produce the security policy to be enforced. Basically, when
some events are triggered, security rules can be activated or
deactivated. Once the appropriate security policy has been
defined, it has to be composed into the architecture model of
the application, see (2) in Figure 4. The models to compose
here are of different nature: an architecture model on one

Figure 5.2: Overview of the Model-Driven Security Approach of [167]

In [167], the authors have proposed to leverage MDE techniques to provide a very

flexible approach for managing access control. The different steps of this approach are

summed up in Figure 5.2. On one hand, access control policies are defined by security

experts, using a DSML, which describes the concepts of access control, as well as their
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relationships. On the other hand, the application is designed using another DSML

for describing the architecture of a system in terms of components and bindings. This

component-based software architecture only contains the business components of the

application, which encapsulate the functionalities of the system, without any security

concern. Then, the authors define mappings between both DSMLs describing how

security concepts are mapped to architectural concepts. These mappings are used to

fully generate an architecture that enforces the security rules. When the security policy

is updated, the architecture is also updated. Finally, the proposed technique leverages

the notion of models@runtime [164] in order to keep the architectural model (itself

synchronised with the access control model) synchronised with the running system. This

way, the running system can be dynamically updated in order to reflect changes in the

security policy. Only users who have the right to access a resource can actually access

this resource.

5.3 A Running Example

In this section, we give a motivating example which will be used throughout this chapter

for describing the diverse characteristics of delegation and illustrating the various aspects

of our approach.

Let us consider a Library Management System (LMS) providing library services with

security concerns like access control and delegation management. There are two types of

user account: personnel accounts (director, secretary, administrator and librarian) are

managed by an administrator; and borrower accounts (lecturer and student) are man-

aged by a secretary. The director of the library has the same accesses as a secretary, but

additionally, he can also consult the personnel accounts. The librarian can consult the

borrower accounts. A secretary can add new books in the LMS when they are delivered.

Lecturers and students can borrow, reserve and return books, etc. In general, the library

is organised with the following entities and security rules.

Roles (users): access rights (e.g. working days)

Director (Bill): consult personnel account, consult, create, update, and delete bor-

rower account.

Secretary (Bob and Alice): consult, create, update, and delete borrower account, add

book.

Administrator (Sam and Tom): consult, create, update, and delete personnel account.

Librarian (Jane and John): consult borrower account, find book by state, find book

by keyword, report a book damaged, report a book repaired, fix a book.
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Lecturer (Paul) and Student (Mary): find book by keyword, reserve, borrow and

return book.

Resources and actions to be protected

Personnel Account: consult, create, update, and delete personnel account.

Borrower Account: consult, create, update, and delete borrower account.

Book: report a book damaged, report a book repaired, borrow a book, deliver a book,

find book by keyword, find book by state, fix a book, reserve a book, return a book

In this organisation, users may need to delegate some of their authorities to other users.

For instance, the director may need the help of a secretary to replace him during his

absence. A librarian may delegate his/her authorities to an administrator during a

maintenance day.

It is possible to only specify role or action delegations by using the DSML described

in [167]. For instance, a role delegation rule can be created to specify that Bill, the

director (prior to his vacation) delegates his role to Bob, one of his secretaries. But

it is impossible for Bill to define whether or not Bob can re-delegate the director role

to someone else (in case Bob is also absent for some reason). The role delegation of

Bill to Bob is also handled manually: it is enforced when Bill creates the delegation

rule and only revoked when Bill deletes this rule. There is no way for Bill to define a

temporary delegation where its active duration is automatically handled. Obviously the

DSML described in [167] is not expressive enough to specify complex characteristics of

delegation.

There are many delegation situations that should be supported by the system. We give

some delegation situations of the LMS as follows:

1. The director (Bill) delegates his role to a secretary (Bob) during his vacation (the

delegation is automatically activated at the start of his vacation and revoked at the end

of his vacation).

2. A secretary (Alice) delegates her task/action of create borrower account to a librarian

(Jane).

3. A secretary (Bob) transfers his role to an administrator (Sam) during maintenance

day. In case of a transfer delegation, the delegator temporarily loses his/her rights dur-

ing the time of delegation.

4. The role administrator is not delegable.

5. The permission of deleting borrower account is not delegable.

6. The director can delegate, on behalf of a secretary, the secretary’s role (or some

his/her permitted actions) to a librarian (e.g. during the secretary’s absence).
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7. If a librarian empowered in role secretary by delegation is no longer able to perform

this task, then he/she can delegate, again, this role to another librarian.

8. The secretary empowered in role director by delegation is not allowed to delegate/-

transfer, again, this role to another secretary.

9. A secretary is allowed to delegate his/her role to a librarian only and to one librarian

at a given time.

10. A secretary is allowed to delegate his/her task of book delivery to a librarian only

and scheduled on every Monday.

11. Bill can delegate his role and permitted actions only to Bob

12. Bob is not allowed to delegate his role.

13. Alice is not allowed to delegate her permitted action of book delivery.

14. Users can always revoke their own delegations.

15. The director can revoke users from their delegated roles.

16. A secretary can revoke librarians empowered in secretary role by delegation, even

if he/she is not the creator of this delegation (e.g. the creator is the director or another

librarian).

This running example shows the two levels of delegation rules as defined in the previous

section: user-level (rules defined by a user: e.g. situations 1, 2, 3) and master-level

(rules defined by a security officer: e.g. 4, 5, 6). Obviously, delegation rules at user-level

have to conform to rules at master-level. For example, the security officer can define

that users of role director are able to delegate on behalf of users of role secretary. Then

at user-level, Bill (director) can create a delegation rule to delegate, on behalf of Alice,

her role (secretary) to Jane (librarian).

5.4 Model-Driven Adaptive Delegation

5.4.1 Overview of Our Approach

In our approach, as noted in Section 5.2, delegation is considered as a “meta-level”

mechanism which impacts the existing access control policies, like an aspect can impact a

base program. We claim that to handle advanced delegation rules, an ideal solution is to

logically separate the delegation rules from the access control policy, each being specified

in isolation, and then compose/weave them together to obtain a new access control policy

(called active security policy) reflecting the delegation-driven policy (Figure 5.3). We

present our metamodel (DSML) for specifying delegation based on RBAC in Section

5.4.2.
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The separation of concerns is not only between delegation and access control, but also

between the security policy and the business logic of the system. Figure 5.4 presents

a wider view of the overall approach. In order to enforce a security policy for the

system, the core business architecture model of the system is composed with the active

security policy previously obtained. The architecture model is expressed in another

DSML, called architecture metamodel (an architecture modelling language described in

[167]). The idea is to reflect security policy into the system at the architecture level.

Section 5.4.3 defines transformation rules to show how security concepts are mapped

into architectural concepts.

The security-enforced architecture model obtained above is a pure architecture model

which by itself reflects how the security policy is enforced in the system. Our model-

driven framework to reflect security policy at the architecture model is generic, meaning

that from the security-enforced architecture model of the system, it is possible to en-

force security policy for running systems on different execution platforms. In Section

5.5, we show how our approach is applied for two different adaptive execution platforms,

i.e. OSGi [222] and Kevoree [80] 1. It is important to note that the security-enforced

architecture model is not used for generating the whole system but only the proxy com-

ponents. These proxy components can be adapted and integrated with the running

system at runtime to physically enforce the security policy. The adaptation and in-

tegration can be done by leveraging the runtime adaptation mechanisms provided by

modern adaptive execution middleware platforms. The approach of possibly generating

proxy components overcomes some main limitations of [167]. Section 5.4.4 is dedicated

to discuss our strategy for adaptation and evolution of the secure systems.

5.4.2 Delegation Metamodel

Our metamodel, displayed in Figure 5.5, defines the conceptual elements and their re-

lationships that can be used to specify access control and delegation policies which are

defined in Section 5.2. Because the delegation mechanism is based on RBAC, we first

explain the main conceptual elements of role-based access control. Then, we show how

our conceptual elements of delegation, based on the RBAC conceptual elements, can be

used to specify various delegation features which are defined in Section 5.2.

As shown in Figure 5.5, the root element of our metamodel is the Policy. It contains

Users, Roles, Resources, Rules, and Contexts. Each user has one role. A security officer

can specify all the roles in the system, e.g. admin, director, etc., via the Role element.

In order to specify an access control policy, the security officer should have defined in

1www.kevoree.org, last access October 2013
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Figure 5.5: The Delegation metamodel

advance the resources that must be protected from unauthorised access. Each resource

contains some actions which are only accessible to authorised users. These protections

are defined in rules: permission rules and delegation rules. Permission rules are used to

specify which actions are accessible to users based on their roles. That means, without

delegation rules or user-specific access control rules, every user is able to access the

actions associated with his/her role only. Delegation rules are used to specify which

actions are accessible to users by delegation. There are two basic types of delegation:

• Role delegation: When users empowered in role(s) delegated by other user(s),

they are allowed to access not only actions associated with their roles but also

actions associated with the delegated role(s).

• Action delegation: Instead of delegating their roles, users may want to delegate

only some specific actions associated with their roles.

Another important aspect of our access control and delegation framework is the notion

of context which has been introduced in Section 5.2.2.1. It can be seen from our meta-

model that every permission/delegation rule is associated with a context. A rule is only

active within its context. The concept of context actually provides our model with high

flexibility. Security policies can be easily adapted according to different contexts.

The full metamodel for specifying delegation is displayed in Figure 5.5. It depicts the

features that are supported by our delegation framework. All delegation management

features are developed based on two basic types of delegation mentioned above. In the
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following, we show how the delegation features can be specified, w.r.t. our metamodel.

In other words, this is how the formal definitions in Section 5.2 are actually implemented.

• Temporary delegation: This is one of the most common types of delegation

used by users. It describes when the delegation starts to be active and when it

ends. The delegator can specify that the delegated role/action is authorised only

during a given time interval, e.g. situation 1 of the running example in Section

5.3. Actually, this can be specified using the recurrence of delegation described

below, but we want to define it separately because of its common use.

• Monotonicity (Transfer of role or permissions): A property isMonotonic

can be used to specify if a delegation is monotonic or non-monotonic. The former

(isMonotonic = true) specifies that the delegated access right is available to both

the delegator and delegatee after enforcing this delegation. As defined in Section

5.2, this delegation is called a grant delegation. The latter (isMonotonic = false)

means the delegated role/action is transferred to the delegatee, and the delegator

temporarily loses his rights while delegating, e.g. situation 3. In this case, the

delegation is called a transfer delegation.

• Recurrence: It refers to the repetition of the delegation. A user may want to

delegate his role to someone else for instance every week on Monday. Recurrence

defines how the delegation is repeated over time. It is similar to what is imple-

mented in calendar system and more precisely the icalendar standard (RFC24452).

It has several properties; the startDate and endDate are the starting and ending

dates of the recurrence. In addition, the startDate defines the first occurrence

of the delegation. The frequency indicates one of the three predefined types of

frequency, daily, weekly or monthly. The occurrences is the number of times to

repeat the delegation. If the occurrences is for instance equals to 2 it means that it

should only be repeated twice even when the endDate is not reached. An example

of this delegation is situation 10 of the running example.

• Delegable roles/actions: These kinds of delegation define which roles or ac-

tions can be delegated and how (master-level). A policy officer can specify that

a role can only be delegated/transferred to specific role(s), e.g. situation 9. If no

delegationTarget is defined for a role, this role cannot be delegated/transferred,

e.g. situation 4. If a role or action (isDelegable = false) is not delegable, it should

never be included in a delegation rule. Moreover, a role can also be delegated by a

user not having this role but his/her own role is specified as can delegate on behalf

of a user in this role (canDelegateOnBehalfOf = true), e.g. situation 6.

2http://www.rfc-editor.org/info/rfc2445
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• Multiple delegations: It should be possible to define the max number of concur-

rent delegations in which the same role or action can be delegated at a given time

(master-level delegation rule). The properties maxConcurrentRoleDelegations and

maxConcurrentActionDelegations define how many concurrent delegations of the

same role/action can be granted, e.g. situation 9. Moreover, it is possible to define

for each specific user a specific maximum number of concurrent delegations of the

same role/action: maxRoleDelegations and maxActionDelegations.

• User specific delegation rights: All user-specific elements are used to define

more strict rules for a specific user rather for his/her role. There are other user-

specific delegations than maxRoleDelegations and maxActionDelegations. It is

possible to define that a specific user is allowed to delegate his role/permitted

action(s) or not (canDelegate = true or false), e.g. situation 12. The property

isNonDelegableAction specifies an action that a specific user cannot delegate, e.g.

situation 13. Moreover, the security officer can define to which explicit user(s)

only (explicitDelegatee) a user can delegate/transfer his role to, e.g. situation 11.

• Multi-step delegation: It provides flexibility in authority management, e.g.

situations 7, 8. The property redelegationDepth is used to define whether or not

the role/action of a delegation can be delegated again. When a creator creates

a new delegation, he/she can specify how many times the delegated role/action

can be re-delegated. If the redelegationDepth = 0, it means that the role/action

cannot be delegated anymore, e.g. situation 8. If the redelegationDepth > 0, that

means the role/action can be delegated again and each time it is re-delegated, the

redelegationDepth is decreased by 1.

• Revocations: All users can revoke their own delegations, e.g. situation 14. Se-

curity officer may set canRevokeAllDelegations = true for a role with a super

revocation power in such a way that a user empowered in this role can revoke

all delegations, e.g. situation 15. Moreover, a role can also be defined such that

every user empowered in this role can revoke any delegation from this role (can-

RevokeAllDelegationsOfThisRole = true), even he/she is not the delegator of the

delegation, e.g. situation 16.

Moreover, each possible instance of the security policy has to satisfy all necessary vali-

dation condition expressed as OCL invariants. For example, we can make sure that no

delegation is out of target, meaning that delegatee’s role has to be a delegation target

of delegator’s role:

context Delegation inv NoDelegationOutOfTarget:

self.delegator.role.delegationTarget −>exists (t | t = self.delegatee.role)
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Or to check that for every user, the number of concurrent role delegations cannot be

over its thresholds:

context User inv NoRoleDelegationOverMax: RoleDelega-

tion.allInstances −>select (d | d.delegator = self) −>size() ≤
self.role.maxConcurrentRoleDelegations and RoleDelegation.allInstances −>select

(d | d.delegator = self) −>size() ≤ self.maxRoleDelegations

Other examples are to restrict the value of the redelegationDepth must not be negative,

or startDate cannot be later than endDate:

context Delegation inv NonNegativeDeleDepth: self.redelegationDepth ≥ 0

context Duration inv ValidDates: self.startDate ≤ self.endDate

5.4.3 Transformations/Compositions

After specifying a security policy by the DSML described in Section 5.4.2, it is cru-

cial to dynamically enforce this policy into the running system. Transformations play

an important role in the dynamic enforcement process. Via model transformations,

security models containing delegation rules and access control rules are automatically

transformed into component-based architecture models. Note that instances of security

models and architecture models are checked before and after model transformations,

using predefined OCL constraints.

The model transformation is executed according to a set of transformation rules. The

purpose of defining transformation rules is to correctly reflect security policy at the ar-

chitectural level. Based on transformation rules, security policy is automatically trans-

formed to proxy components, which are then integrated to the business logic components

of the system in order to enforce the security rules. The metamodel of component-based

architecture can be found in [167] and an instance of it can be seen in Figure 5.8. We

first describe the transformation that derives an access control model according to del-

egation rules (step 1), and then describe another transformation to show how security

policy can be reflected at the architecture level (step 2). Moreover, we also show an

alternative way of transformation that combines two steps into one.

5.4.3.1 Adapting Role-Based Access Control policy model to reflect dele-

gation (step 1):

Within the security model shown in Figure 5.3, delegation rules are considered as “meta-

level” mechanisms that impact the access control rules. The appropriate access control

rules and delegation rules are selected depending on the context information and/or the
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Figure 5.6: A pure RBAC metamodel

request of changing security rules coming from the system at runtime. According to

the currently active context (e.g. WorkingDays), only in-context delegation rules and

in-context access control rules of the security model (e.g. rules that are defined with

context = WorkingDays) are taken into account to derive the active security policy

model (Figure 5.3). Theoretically, we could say that delegation rules impact the core

RBAC elements in the security model in order to derive a pure RBAC model (without

any delegation and context elements) which conforms to a “pure” metamodel of RBAC

(Figure 5.6). Delegation elements of a security policy model are transformed as follows:

A.1: Each action delegation is transformed into a new permission rule. The subject of

the permission is user (delegatee) object. The set of actions of the permission contains

the delegated action.

A.2: Each role delegation is transformed as follows. First, a set of actions associated

to a role is identified from the permissions of this role. Then, each action is transformed

into a permission like transforming an action delegation described above.

A.3: A temporary delegation is only taken into account in the transformation if it

is in active duration defined by the start and end properties. In fact, when its active

duration starts the (temporary) action/role delegation is transformed into permission

rule(s) as described above. When its active duration ends the temporary delegation is

removed from the policy model.

A.4: If an action delegation is of type transfer delegation (monotonic), then it is trans-

formed into a permission rule and a prohibition rule. The subject of the permission is

the user -delegatee object. The set of actions of the permission contains the delegated

action. The subject of the prohibition is the user -delegator object. The set of actions

of the prohibition contains the delegated action.

A.5: If a role delegation is of type transfer delegation, then it is also transformed into
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a permission rule and a prohibition rule. The subject of the permission is the user -

delegatee object. The set of actions of the permission contains the delegated actions.

The delegated actions here are the actions associated with this role. The subject of

the prohibition is the user -delegator object. The set of actions of the prohibition also

contains the delegated actions.

A.6: If a delegation rule is defined with a recurrence, based on the values set to the

recurrence, the delegation rule is only taken into account in the transformation within

its fromDate and untilDate, repeated by frequency and limited by occurrences. In other

words, only active (during recurrence) delegation rules are transformed.

A.7: (User-specific) If a user is associated with any non-delegable action, the action

delegation containing this action and this user (as delegator) is not transformed into

a permission rule. Similarly, if a user is specified as he/she cannot delegate his/her

role/action, no role/action delegation involving this user is transformed.

A.8: (Role/action-specific) Any delegation rule with a non-delegable role/action will

not be transformed. In fact, a delegation rule is only transformed if it satisfies (at least)

both user-specific and role/action-specific requirements.

A.9: Only a role delegation to a user (delegatee) whose role is in the set of delegation-

Target will be considered in the transformation.

A.10: Before any delegation is taken into account in the transformation, it has to sat-

isfy the requirements of max concurrent action/role delegations. Note that the

user-specific values have higher priorities than the role-specific values.

A.11: A delegation is only transformed if its redelegationDepth > 0. Whenever a user

empowered in a role/an action by delegation re-delegates this role/action, the newly cre-

ated delegation is assigned a redelegationDepth = the previous redelegationDepth

- 1.

After transforming all delegation rules, we obtain a pure RBAC model which reflects

both the delegation model and access control model. This pure RBAC model is then

transformed into a security-enforced architecture model as described next.

5.4.3.2 Transformation of Security Policy to Component-based Architec-

ture (step 2):

The transformation rules are defined below. The goal is to transform every security

policy model (pure RBAC model obtained in step 1) which conforms to the metamodel

shown in Figure 5.6 to a component-based architecture model which conforms to the

metamodel described in [167]. However, both the security policy model and the base

model provided by a system designer are used as inputs for the model transformation/-

composition. Via a graphical editor, the security designer must define in advance how
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Figure 5.7: Mapping Resources to Business Logic Components

the resource elements in the policy model are related to the business components in the

base model. Figure 5.7 shows how each action in the policy can be mapped to the Java

method in the business logic.

Because the base model already conforms to the architecture metamodel, we now only

focus on transforming the security policy model into the security-reflected architec-

ture model. As we know, this transformation/composition process will also weave the

security-reflected elements into the base model in order to obtain the security-enforced

architecture model.

The core elements of RBAC like resource, role, and user are transformed following these

transformation rules. All the transformation rules make sure that the security policy is

reflected at the architectural level.

R-A.1: Each resource is transformed into a component instance, called a resource proxy

component. According to the relationship between the resource elements in the policy

model and the business components in the base model, each resource proxy component

is connected to a set of business components via bindings. To be more specific, each

action of a resource element is linked to an operation of a business component (Figure

5.7). By connecting to business components, a resource proxy component provides and

requires all the services (actions) offered by the resource.

R-A.2: Each role is also transformed into a role proxy component. According to the

granted accesses (permission rules associated with this role) to the services provided by

the resources, the corresponding role proxy component is connected to some resource

proxy component(s) (Figure 5.8). A role proxy component is connected to a resource

proxy component by transforming granted accesses into ports and bindings. Each (ac-

tive) access granted to a role is transformed into a pair of ports: a client port associated
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Figure 5.8: Architecture reflecting security policy before and after adding a delegation
rule (bold lines)

with the role proxy component, a server port associated with the resource proxy com-

ponent, and a binding linking these ports.

R-A.3: Each user element defined in the policy model is also transformed into a user

proxy component. Because each user must have one role, each user proxy component

is connected to the corresponding role proxy component. However, each user may have

access to actions associated to not only his/her role but also to actions associated to

other roles by delegation. Thus, each user proxy component may connect to several role

proxy components. The connection is established by transforming each access granted

to a user into a pair of ports: a client port associated with the user proxy component, a

server port associated with the corresponding role proxy component (providing the ac-

cess/port), and a binding linking these ports (Figure 5.8). Actually, the granted accesses

are calculated not only from permission rules but also from prohibition rules. Simply,

the granted accesses that equal permissions exclude prohibitions.

In our approach, revocation of a delegation simply consists in deleting the corresponding

delegation rule. In this way, the revocation is reflected at the architectural level and

physically enforced in the running system. Moreover, both the delegator and delegatee

elements will be removed if these users are not involved in any delegation rules. As
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described above, user elements are transformed into proxy components. However, it

is important to stress that only users involved in delegation rules (e.g. Bill, Bob and

Sam in Figure 5.8) are created in the security policy model and transformed into proxy

components. Users who are not involved in any delegation rules (e.g. Jane and Mary in

Figure 5.8), are manipulated as session objects which directly access the services offered

by the corresponding role proxy components.

Two steps described above are two separate model transformations that are mainly used

to explain how delegation can be considered as a “meta-level” mechanism for adminis-

trating access rights. The first model transformation is to transform a delegation-driven

security model into a pure RBAC model. The second model transformation is to trans-

form the RBAC model into an architecture model. In fact, these two steps could be

done in only one model transformation that directly transforms the delegations, the

access control policy and the business logic model into an architecture model reflecting

the security policy. However, this alternative way (described in the following) has the

disadvantage of losing the intermediate security model (the active security policy) that

could be useful for traceability purpose.

5.4.3.3 An alternative way using only one transformation:

In this approach, we have to define different transformation rules to transform directly

every security policy model which conforms to the metamodel, shown in Figure 5.5, to

a component-based architecture model which conforms to the architecture metamodel

described in [167]. Core elements of RBAC like resources, roles, and users are trans-

formed following these transformation rules:

R-B.1: Each resource is transformed into a component instance, called a resource proxy

component (already presented).

R-B.2: Each role also is transformed into a role proxy component (already presented).

The only difference here is that the context has to be taken into account (in the step

2 of transformation mentioned earlier, no context existed because context was already

dealt with in the step 1). Because every permission is associated with a context, we only

transform permissions with the context that is active at the moment.

R-B.3: Each user element defined in the policy model is also transformed into a user

proxy component. However, the connection (via bindings) from a user proxy component

to the role proxy component(s) is not only depended on the user’s role but also dele-

gation rules that the corresponding user involved in. The transformation of delegation

rules is presented below.
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All the transformation rules above make sure that access control rules are reflected at

the architecture level. However, the delegation rules will impact this transformation

process in order to derive the security-enforced architecture model reflecting both access

control and delegation policy. Delegation elements of a policy model are transformed as

follows:

R-B.4: Each action involved in an action delegation is transformed into a pair of

ports and a binding. A client port (representing the required action) is associated with

the user (delegatee) proxy component. The binding links the client port to the corre-

sponding server port (representing the same action provided) that associated with the

role proxy component reflecting the role of the delegator.

R-B.5: Each role delegation is transformed in a similar way as action delegation.

First, a set of actions associated to a role can be identified from the permissions of this

role. Then, each action in the set is transformed into a pair of ports and a binding as

transforming an action delegation.

R-B.6: A temporary delegation is only transformed into bindings if it is still in

active duration defined by start and end properties.

R-B.7: If a delegation is of type transfer delegation, then both user elements (dele-

gator and delegatee) are transformed into delegator and delegatee proxy components as

described above. The delegator proxy component is not connected to the corresponding

role proxy component because he/she already transferred his/her access rights to the

delegatee. Figure 5.8 shows a change in the architecture when Bill transfers his role to

Bob.

R-B.8: If a delegation is defined with a recurrence, based on the values set to recur-

rence, the delegation rule is only active during the recurrence (similar to A.6).

R-B.9: If a user is associated with any non-delegable action, the delegation of this

action is not taken into account while doing the transformation. Similarly, if a user is

specified as he/she can not delegate his/her role/action, no delegation requested by

this user will be transformed.

R-B.10: Only a role delegation to a user (delegatee) whose role is in the set of dele-

gationTarget will be consider in the transformation.

R-B.11: Before any delegation is taken into account in the transformation, it has to

satisfy the requirements of max concurrent action/role delegations. Note that the

user-specific values have higher priorities than the role-specific values.

R-B.12: A delegation is only transformed if its redelegationDepth > 0. Whenever

a user empowered in a role/an action by delegation re-delegates this role/action, the

newly created delegation is assigned a redelegationDepth = the previous redelega-

tionDepth - 1.
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By taking into account delegation rules while transforming access control rules of policy

model into security-enforced architecture model, both delegation and access control rules

are reflected at the architecture level.

5.4.4 Adaptation and Evolution Strategies

The model transformation/composition presented in Section 5.4.3 ensures that the se-

curity policies are correctly and automatically reflected in an architectural model of the

system. The key steps to support delegation (i.e. specifications and transformations)

are already presented in Sections 5.4.2 and 5.4.3. The last step consists in a physical

enforcement of the security policy by means of a dynamic adaptation of the running

system. In this section, our adaptation and evolution strategies are discussed.

5.4.4.1 Adaptation

The input for the adaptation process is a newly created security-enforced architecture

model (Figure 5.9). First, this new architecture model is validated using invariant

checking [165]. This valid architectural model actually represents the new system state

the runtime must reach to enforce the new security policy of the system. According

to the classical MAPE control loop of self-adaptive applications, our reasoning process

performs a comparison (using EMFCommpare) between the new architecture model

(target configuration) and the current architecture model (kept synchronised with the

running system) [166]. This process triggers a code generation/compilation process, and

also generates a safe sequence of reconfiguration commands [165]. Actually, the code

generation/compilation process is only triggered if there are new proxy components,

e.g. new user proxy components involved in delegation, that need to be introduced

into the running system. The dynamic adaptation of the running system is possible

thanks to modern adaptive execution platforms like OSGi [222] or Fractal [53], and

most recently Kevoree [80], which provide low-level APIs to reconfigure a system at

runtime. The running system is then reconfigured by executing the safe sequence of

commands, compliant to the platform API, issued by the reasoning process. In an

optimised model@runtime platform like Kevoree, all we need to do is to provide the

reconfiguration script (Kevoree script) for the platform. The reasoning process is taken

care of by the platform. In fact, the generation/compilation phase if needed could be

time consuming. However, this phase has no impact on the running system, which

remains stable until being adapted by executing the reconfiguration script. Thus, the

actual adaptation phase lasts for only several milliseconds.
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Figure 5.9: Overview of our adaptation strategy

In [167], the adaptation is entirely based on executing platform-specific reconfigura-

tion scripts specifying which components have to be stopped, which components and/or

bindings should be added and/or removed. This results in several limitations regarding

delegation mechanisms:

L.1: Using only reconfiguration scripts implies to create all the potentially needed ports

(used for bindings between user proxy components) beforehand. But all the combina-

tions of users, roles, resources, actions could lead to a combinatorial explosion and make

it infeasible for implementation.

L.2: In [167], the delegation between users are reflected using bindings connecting one

user proxy component to another. But this approach is not suitable for supporting com-

plex delegation features. For example, a transfer delegation will be reflected by adding

bindings between the delegator and delegatee but removing bindings between delegator

and the corresponding role proxy component. Consequently both delegator and delegatee

cannot access the resource, which does not correctly reflect a transfer delegation.

L.1 can be solved by the automatic re-generation of proxy components and bindings

between them according to changes in the architectural model. Moreover, as mentioned

in Section 5.4.3.2, only users involved in a delegation are transformed into user proxy

components with necessary ports and bindings. In this way, only required ports and
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bindings are created dynamically. L.2 is solved by our model transformation approach.

All complex delegation features are considered as “meta-level” mechanisms that impact

access control rules. In this way, a transfer delegation will be reflected by adding bind-

ings between the delegatee and the corresponding delegated role proxy component, but

removing bindings between delegator and the corresponding role proxy component.

Our adaptation strategy could take more time than simply running a reconfiguration

script because of the generation and compilation time of newly generated proxy compo-

nents. But the process of generating and compiling new proxy components does not in

fact harm the performance because each proxy component is very light-weight and only

necessary proxy components are generated (see Section 5.5). Moreover, for each specific

security policy, it is possible to think in advance and prepare as many proxy component

types as possible. This strategy could make the generation/compilation phase unneces-

sary for most of the cases, except some major evolution of the business logic and/or the

security policy.

5.4.4.2 Evolution

In [167], the evolution of the security policy is not totally dealt with. It is possible to

run a reconfiguration script to reflect changes like adding, removing and updating rules.

But adding a new user, role or resource requires the generation and compilation of new

proxy components, which is impossible using only reconfiguration scripts. Thus, our

strategy of automatically generating and compiling proxy components (see Section 5.5)

is more practical w.r.t. evolution.

Another important aspect of evolution relates to the addition, removal or update of

resources and actions in the business logic. The base architecture model can be updated

with changes in the business logic, e.g. when a new resource is added. On the other

side, security officers can manually update the mappings (Figure 5.7) following changes

of resources/actions in the base architecture model. By composing the security model

with the base architecture model as described earlier, the security policy is evolved

together with the business logic of the system.

5.5 Implementation and Evaluation

This section shows how the steps described in Figure 5.4 have been implemented. In

order to prove that our approach is generic, we target two different adaptive execution

platforms: OSGi (more detail in Section C.1) and Kevoree (more detail in Section C.2).
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Figure 5.10: OSGi and Kevoree as adaptive execution platforms

Figure 5.10 shows that our metamodels and model-to-model transformation/composition

are generic, i.e. independent of execution platforms. Only the adaptation process (e.g.

the reconfiguration script) and the running system are platform-specific. The description

of three case studies used in our experiments are given in Section 5.5.1. We evaluate our

proof-of-concept implementations and discuss the results in Section 5.5.2. The business

logic of these case studies are the same for the OSGi and Kevoree adaptive execution

platforms.

5.5.1 Case Studies

To evaluate the feasibility of our approach, we have applied it on three different Java-

based case studies, which have also been used in our previous research work on access

control testing [170]:

1) LMS: as described in our running example.

2) VMS3: The Virtual Meeting System offers simplified web conference services. The

virtual meeting server allows the organisation of work meetings on a distributed platform.

When connected to the server, a user can enter (exit) a meeting, ask to speak, eventually

3For more information about VMS (server side), please refer to
http://franck.fleurey.free.fr/VirtualMeeting.
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speak, or plan new meetings. There are three resources (Meeting, Personnel Account,

User Account) and six roles (Administrator, Webmaster, Owner, Moderator, Attendee,

and Non-attendee) defined for this system with many access control rules, and delegation

situations between the users of each role.

3) ASMS: The Auction Sale Management System allows users to buy and sell products

online. Each user in the system has a profile including some personal information.

Users wanting to sell a product (sellers) are able to start a new auction by submitting

a description of the product, the starting and ending date of the auction. There are

five resources (Sale, Bid, Comment, Personnel Account, User Account) and five roles

(Administrator, Moderator, Seller, Senior Buyer, and Junior Buyer) defined for this

system, also with many access control rules, and delegation situations between users of

each role.

Table 5.1: Size of each system in terms of source code

# Classes # Methods # LOC

LMS 62 335 3204

VMS 134 581 6077

ASMS 122 797 10703

Table 5.2: Security rules defined for each system

# AC rules # Delegations Total

LMS 23 4 27

VMS 36 8 44

ASMS 89 8 97

Table 5.1 provides some information about the size of these three systems (the number

of classes, methods and lines of code). In terms of security policies, Table 5.2 shows the

number of access control (AC) rules and delegation rules defined for each system, used

in our experiments.

All these systems are designed as component-based systems. The business components of

each system contain the business logic, e.g. Book Service component, Personnel Account

component, Meeting, Sale, Authenticate component, Data Access Object components,

etc. To enable dynamic security enforcement for a system, the resources (components

that have to be controlled) are specified in the base model, and mapped to the resources

of the security policies. Our metamodels are applicable for different systems without any

modification or adaptation. The structure of delegation and access control policies for

all case studies is the same, only roles, users, resources, actions are specific to each case

study. The proxy components are automatically generated and synchronised with the

security policy model via model transformations and reconfiguration at runtime. The
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Table 5.3: Performance of weaving Security Policies using Kermeta and ATL

# Rules Kermeta 1.4.1 Kermeta 2.0.6 ATL 3.2.1

LMS 27 4s 1.836s 0.048s

VMS 44 7s 2.161s 0.055s

ASMS 97 18s 2.834s 0.140s

model-to-model transformation and model-to-text transformation (code generation) can

be implemented correspondingly using transformation engines like Kermeta [177] (or

ATL4), and Xpand [130].

5.5.2 Evaluation and Discussion

There are two kinds of response time we would like to measure in our case studies: the

authorisation mechanism and the dynamic adaptation according to changing security

policies. The experiments were performed on Intel Core i7 CPU 2.20 GHz with 2.91

GB usable random-access memory running on Windows 7. The number of security

rules defined for each system in our experiments is indicated in Table 5.2. Because all

our access control and delegation rules are transformed to proxy components reflecting

our security policy, response times to an access request only depends on method calls

between these proxy components and business components (Figure 5.8). Unsurprisingly,

response time to every resource access is a constant, only about 1 millisecond, because

the access is already possible or not by construction. In other words, our 3-layered

architecture reflecting security policy enables very quick response, independently from

the number of access control and delegation rules.

For experimenting with performance of adapting the running system, we have imple-

mented the model transformation/composition rules using not only Kermeta but also

ATL. Regarding the adaptation process, Table 5.3 shows results of each case study for

performing the model transformations of security policies mentioned in Table 5.2, using

Kermeta 1.4.1, Kermeta 2.0.6, and ATL 3.2.1 correspondingly. Note that these model-

to-model transformations are generic, platform-independent w.r.t the implementation

platform of the running system. Thus, the same model-to-model transformations are

used in both cases of implementation platform, i.e. OSGi and Kevoree. At first, we used

Kermeta 1.4.1 to implement our model transformations. However, the performance of

using Kermeta 1.4.1 shown in Table 3 was disappointing. It took more than 18 seconds

to weave 97 security rules in case of the ASMS. To know if this performance problem

is inherently linked to our approach or simply linked to the use of Kermeta 1.4.1, we

decided to also implement our model transformations using ATL 3.2.1. Our experiments

4http://www.eclipse.org/atl/
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show that the implementation using ATL 3.2.1 is much more efficient. We can conclude

that the initial performance issue was due to Kermeta 1.4.1. Then, we have tried to

use Kermeta 2.0.6 that is the latest version of Kermeta at this moment, compiled to

byte code, which means much better performances. As can be seen from Table 5.3, the

results of using Kermeta 2.0.6 are much better compared to using Kermeta 1.4.1.

Note that the transformation, code generation and compilation are performed “offline”

meaning that the running system is not yet adapted. The actual adaptation happens

when the newly compiled proxy components are integrated into the running system to

replace the current proxy components. This actual adaptation process takes only some

milliseconds by using the low-level APIs to reconfigure a system at runtime provided

by the modern adaptive execution platforms, i.e. OSGi [222] and Kevoree [80]. Right

after the new proxy components are up and running, the new security policy is really

enforced in the running system.

More details on the implementations on different platforms OSGi and Kevoree can be

found in Appendix C.

5.6 Related Work

There is substantial work related to delegation as an extension of existing access control

models. Most researchers focused on proposing models solely relying on the RBAC

formalism [205], which is not expressive enough to deal with all delegation require-

ments. Therefore, some other researchers extended the RBAC model by adding new

components, such as new types of roles, permissions and relationships [22, 242, 5, 61,

178]. In [33], the authors proposed yet another delegation approach for role-based access

control (more precisely for ORBAC model) which is more flexible and comprehensive.

However, no related work has provided a model-driven approach for both specifying

and dynamically enforcing access control policies with various delegation requirements.

Compared to [167], we extend the model-based dynamic adaptation approach of [167]

with some key improvements. More specifically, we propose a new DSML for delegation

management, but also new composition rules to weave delegation in a RBAC-based

access control policy. In addition, we present a new way (by generating proxy) to im-

plement the adaptation of the security-enforced architecture of the system. Indeed, we

provide an extensive support for delegation as well as co-evolution of security policy and

security-critical system. That means our approach makes it possible to deeply modify

the security policy (e.g. according to evolution of the security-critical system) and dy-

namically adapt the running system, which is often infeasible using the other approaches

mentioned above.
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In addition, several researchers proposed new flexible access control models that may not

include delegation, but allow a flexible and easy to update policy. For instance, Bertino

et al. [34] proposed a new access control model that allows expressing flexible policies

that can be easily modified and updated by users to be adapted to specific contexts.

The advantage of their model resides in the ability to change the access control rules

by granting or revoking the access based on specific exceptions. Their model provides

a wide range of interesting features that increase the flexibility of the access control

policy. It allows advanced administrative functions for regulating the specification of

access controls rules. More importantly, their model supports delegation, enabling users

to temporarily grant other users some of their permissions. Furthermore, Bertolissi et

al. proposed DEBAC [36] a new access control model based on the notion of event

that allows the policy to be adapted to distributed and changing environments. Their

model is represented as a term rewriting system [23], which allows specifying changing

and dynamic access control policies. This enables having a dynamic policy that is easy

to change and update.

As far as we know, no previous work tackled the issue of enforcing adaptive delegation.

Some previous approaches were proposed to help modelling more general access control

formalisms using UML diagrams (focusing on models like RBAC or MAC). RBAC

was modelled using a dedicated UML diagram template [127], while Doan et al. pro-

posed a methodology [66] to incorporate MAC in UML diagrams during the design

process. All these approaches allow access control formalisms to be expressed during

the design. They do not provide a specific framework to enable adaptive delegation at

runtime. Concerning the approaches related to applying MDE for security, we can cite

UMLsec [107], which is an extension of UML that allows security properties to be ex-

pressed in UML diagrams. In addition, Lodderstedt et al. [143] propose SecureUML

which provides a methodology for generating security components from specific mod-

els. The approach proposes a security modelling language to define the access control

model. The resulting security model is combined with the UML business model in or-

der to automatically produce the access control infrastructure. More precisely, they use

the Meta-Object facility to create a new modelling language to define RBAC policies

(extended to include constraints on rules). They apply their technique in different exam-

ples of distributed system architectures including Enterprise Java Beans and Microsoft

Enterprise Services for .NET. Their approach provides a tool for specifying the access

control rules along with the model-driven development process and then automatically

exporting these rules to generate the access control infrastructure. However, they do not

directly support delegation. Delegation rules should be taken into account early and the

whole system should be generated again to enforce the new rules. Our approach enables
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supporting directly the delegation rules and dynamically enforcing them by reconfiguring

the system at runtime.

5.7 Testing Delegation Policy Enforcement via Mutation

Analysis

In this section, we present a mutation analysis approach for testing delegation policy

enforcement described before. Delegation may be viewed as an exception made to an

access control policy in which a user gets right to act on behalf of other users. This

“meta-level” characteristic together with the complexity of delegation itself make it

crucial to ensure the correct enforcement and management of delegation policy in a

system via testing. To this end, we adopt mutation analysis for delegation policies.

In order to achieve this, a set of mutation operators specially designed for introducing

mutants into the key components (features) of delegation is proposed. Our approach

consists of analysing the representation of the key components of delegation, based on

which we derive the suggested set of mutation operators. These operators can then be

used to introduce mutants into delegation policies and thus, enable mutation testing.

5.7.1 Introduction

In the field of access control, delegation is a very complex but important aspect that

plays a key role in the administration mechanism [33]. Delegation is a process of del-

egating access rights from one user (called delegator) to another user (delegatee). The

management and enforcement of a delegation policy is crucial because delegation can

be considered as administrative mechanism of access control. In a process of delegation,

user gets exceptional capabilities to act on behalf of other users. Any discrepancy in

delegation can cause a malicious user to get access to the protected resources of the

system. It may cause privacy issues in case the data is used without the consent of

authorised user. Therefore the enforcement of delegation in the system should be free

from any disparity. Testing is a way to get confidence on the correctness of security

policies enforcement, including delegation policies enforcement.

Software Testing aims at finding errors by executing tests against the flaws of the system.

It is a way to establish confidence on the correctness of the system behaviour and

to ensure its quality. Although work is being done using formal verification [4, 94]

and static/dynamic program analysis based techniques [142], testing approaches are

still in need. As formal verification identifies design flaws but, some of the underlying

implementation defects still remain undetected. To this end, some work have been done



www.manaraa.com

Chapter 5. MDS with Modularity for Dynamic Adaptation 110

on testing access control policies [138, 147, 148, 238]. However, none of these works

aims at testing delegation policies. This forms the main issue addressed by the present

section.

Mutation testing has been applied on XACML policies [56] and OrBAC policies [141].

Additionally, generic policy mutants and Obligation specific mutants have also been

proposed in [146] and in [70], respectively. In this lines, this section proposes the use

of mutation analysis for testing the behaviour of a system with respect to its delegation

policy. This practice provides an effective way to specialise the testing process to the

delegation enforcement mechanism.

Delegation policy enforcement has certain testing challenges that makes its testing task

interesting and hard. It requires verifying the mapping between different delegation

elements such as delegator, delegatee and role or permission. Additionally, since del-

egation is often context dependent, it is vital to ensure that a specific delegation rule

is enforced correctly in its specified context. Moreover, advanced (complex) delegation

features (like monotonicity, temporary delegation, multiple delegation, multi-step dele-

gation, etc.) pose further difficulties to the testing process. However, as a key role in the

administration mechanism of access control, the more complex delegation features that

a system supports, the easier (and more secure) its administration task is. Thus, test-

ing delegation policy enforcement has to take into account various advanced delegation

features that this section is dealing with.

Testing of a delegation policy enforcement is the process of ensuring the correct enforce-

ment of its delegation rules in a system. Mutation analysis for delegation policy involves

creating mutants of a policy by injecting defects into the delegation rules of the policy.

The system implementation is then checked against the enforcement of the mutated

policy versions. In view of the request-response nature of a delegation, policy mutants

can be recognised as killed or live. In this section, we introduce the issues of testing

delegation policy enforcement. Ultimately, we suggest the use of mutation testing for

their effective test. Briefly, our main contributions consist of 1) a formal specification

of access control and delegation policy supporting advanced delegation features; and 2)

a set of mutation operators derived from the process of analysing different aspects of

delegation.

The rest of this section is organised as follows. Section 5.7.2 illustrates the aspects

of testing a delegation policy via a running example. In Sections 5.7.3 and 5.7.4 the

proposed set of mutation operators and a demonstration example of their application

are given respectively. Finally Sections 5.7.5 discuses some related work and Section

5.7.6 summaries the main points.
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5.7.2 Some Simplified Examples of Delegation for Testing

We reuse the running example about a Library Management System presented in Sec-

tion 5.3. Some delegation situations are described as follows to illustrate our testing

approach. We refer to these delegations as delegation 1, 2 and 3.

1. Bill (has role Director) delegates his permission of consulting personal account to

Bob (Secretary).

2. Alice (Secretary) transfers her permission of creating borrower account to Jane

(Librarian). Alice cannot use this permission while delegating it.

3. Bill (Director) delegates his permission of consulting personal account to Bob

(Secretary) during his vacation (the delegation is automatically activated at

the start of his vacation and revoked at the end of his vacation).

These delegation situations also will be used further in testing their correct enforcement

via mutation analysis.

5.7.3 Mutation Operators

In this section, we define mutation operators for delegations. The operators are defined

solely for delegation in an access control policy and we do not consider other aspects of

policy such as obligations. Testing of access rights and obligations is done separately in

several works [70], [146]. We categorise the operators into two broad categories: basic

delegation operator and advanced delegation operator.

Note that we omitted the notion of role in Section 5.2 because we focused on the formal-

isation of different features of delegation where they can be specified without the defini-

tion of role. However, in practice, the notion of role is commonly used for supporting nat-

ural abstractions like sets of permissions. Role-Based Access Control (RBAC) introduces

a set of role and decomposes the relation AC into user-role assignment UR ⊆ U×R, and

role-permission-context assignment RPC ⊆ R × P × C. Thus, AC = UR ◦ RPC. For

evaluation of operators, we will derive our delegation operators based on RBAC but we

consider aspects that are commonly found in most access control and delegation models.

5.7.3.1 Basic Delegation Mutation Operators

Basically delegation are of two types: permission delegation and role delegation.

- Permission delegation: Users can delegate specific permission(s) that are associated
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with their own roles.

- Role delegation: Role delegation means a user empowered in some role(s) can delegate

his role to other user (s). In this way the delegatee can use permissions of his role and

permissions of role that is delegated to him. We introduce the following operators based

on the basic types of delegation.

Permission Delegation Operator Permission delegations are the most frequent type

of delegations used in access control. Permissions are delegated between two subjects,

like in LMS, one such delegation is Alice (secretary) delegated her permission to create

borrow account to Jane (librarian). The Permission Delegation Operator (PDM) will

mutate the permission delegation rule by replacing the permission being delegated by

another permission of the delegator.

Definition 5.12. PDM(u1, u2, p1a, c) : −
pre (u1, u2, p1a, c) ∈ ULD ∧ (u1, r1) ∈ UR ∧ (u2, r2) ∈ UR ∧ (r1, p1a, c) ∈ RPC ∧
(r1, p1b, c) ∈ RPC

body ULD := ULD \ {(u1, u2, p1a, c)}∪ {(u1, u2, p1b, c)} ; AC := AC ∪{(u2, p1b, c)} end

post (u2, p1b, c) ∈ AC ∧ (u1, u2, p1b, c) ∈ ULD

Role Delegation Operator The Role Delegation Operator (RDM) is used to simulate

errors in delegation of roles. The RDM operator will mutate the delegation rule by

replacing the delegator by some other user having different role. For example in the

LMS system, one delegation is: Bill (Director) delegates his role to Bob (Secretary).

The most important aspect in such a delegation is to establish correct link between

delegator-role-delegatee. This means that the right delegator delegates the right role to

the delegatee.

Definition 5.13. RDM(u1, u2, r1, c) : −
pre (u1, r1) ∈ UR ∧ (u2, r2) ∈ UR ∧ (u3, r3) ∈ UR ∧ r1 6= r2 6= r3 ∧ (u1, u2, r1, c) ∈ ULD

body ULD := ULD \ {(u1, u2, r1, c)} ∪ {(u3, u2, r3, c)} ; UR := UR ∪ {(u2, r3)} end

post (u2, r3) ∈ UR ∧ (u3, u2, r3, c) ∈ ULD

5.7.3.2 Advanced Delegation Operators

Advanced delegation operators are described w.r.t advanced properties of delegation

such as transfer delegation, temporary delegation, user-specific delegation, role-specific

delegation, etc., we introduce mutants to simulate errors that affects the correctness of

these types of delegation.

Monotonic Delegation Operators A delegation can be monotonic or non-monotonic.

The former specifies that the delegated access right is available to both the delegator and
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delegatee after enforcing this delegation. The latter means that the delegated role/per-

mission is transferred to the delegatee, and the delegator temporarily loses his rights

while delegating them. In this case, the delegation is called a transfer delegation. For

instance in LMS, a secretary (Bob) transfers his role to an administrator (Sam) and Bob

no longer can use his role during the delegation period.

By mutating the property monotonicity of a delegation, we can simulate errors such as

the enforcement of a transfer delegation is implemented as a grant delegation, or vice

versa, a grant delegation is changed to a transfer delegation. The Transfer to Grant

Delegation Operator (T2G) and the Grant to Transfer Delegation Operator (G2T) are

defined for performing these mutations.

Definition 5.14. G2T (u1, u2, p, c&IsMonotonic) : −
pre (u1, p, c) ∈ AC ∧ (u1, u2, p, c&IsMonotonic) ∈ ULD

body ULD := ULD \ {(u1, u2, p, c&IsMonotonic)} ∪ {(u1, u2, p, c&IsNonMonotonic)}
end

post (u1, p, c) /∈ AC ∧ (u1, u2, p, c&IsNonMonotonic) ∈ ULD

Definition 5.15. T2G(u1, u2, p, c&IsNonMonotonic) : −
pre (u1, p, c) /∈ AC ∧ (u1, u2, p, c&IsNonMonotonic) ∈ ULD

body ULD := ULD \ {(u1, u2, p, c&IsMonotonic)} ∪ {(u1, u2, p, c&IsMonotonic)} end

post (u1, p, c) ∈ AC ∧ (u1, u2, p, c&IsMonotonic) ∈ ULD

Context-based Delegation Operators Delegations are always applied in some con-

text. Test should guarantee correct implementation of context of delegations. Delegation

contexts can be temporal, spatial, provisional, pre-requisite or a user declared context.

The context is tested by reducing the scope of the context (CR), by extending the scope

of the context (CE) and by negating the original context (CN).

Here, we only deal with temporal delegation because of its popularity [63]. The other

types of context-based delegations are not considered. We introduce the Temporal Del-

egation Operator (TDM) to mutate the duration of temporal delegation. To be more

specific, we mutate the temporal delegation rule by reducing or expanding the duration

of a temporal delegation. For example, we apply TDM for the temporal delegation

defined in Definition 5.6 as follows.

Definition 5.16. TDM(startDate, endDate) : −
pre vacation period(startDate, endDate)

body startDate := laterStartDate ∧ laterStartDate > startDate ∧ laterStartDate <

endDate end

post vacation period(laterStartDate, endDate)
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Role-Specific Delegation Operators A security policy could allow users having a

specific role can only delegate to other users having some role that belongs to the possible

delegation targets of that role. This can be seen as the case where the security policy

ensures that no conflict of interest can occur by delegation. Roughly speaking, one

example is in any case a student must never have permissions of both roles student

and lecturer because he can edit his own grades. That means a lecturer does not have

right to delegate his role to his student. To test this kind of restriction we propose the

following operators. The Role Delegation Off-Target 1 Operator (RDOT1) will replace

the delegatee by another user whose role is not a possible target of the delegator’s role.

That means there exists a delegation rule at master level saying that a user of this role

is a possible delegatee of a user of another role: (u1, u2, r, c) ∈MLD. Note that to keep

it general, we use the definition of master-level delegation rule to refer to all kinds of

delegation rule specifying constraints, e.g. role-specific delegation, multiple delegation,

multi-step delegation, etc.

Definition 5.17. RDOT1(u1, u2, r, c) : −
pre (u1, u2, r, c) ∈MLD ∧ (u1, u3, r, c) /∈MLD ∧ (u1, u2, r, c) ∈ ULD

body ULD := ULD \ {(u1, u2, r, c} ∪ {(u1, u3, r, c)} end

post (u1, u3, r, c) /∈MLD ∧ (u1, u3, r, c) ∈ ULD

Vice versa, the Role Delegation Off-Target 2 Operator (RDOT2) will replace the delega-

tor by another user whose role’s delegation targets set does not contain the delegatee’s

role.

Definition 5.18. RDOT2(u1, u2, r, c) : −
pre (u1, u2, r, c) ∈MLD ∧ (u3, u2, r, c) /∈MLD ∧ (u1, u2, r, c) ∈ ULD

body ULD := ULD \ {(u1, u2, r, c} ∪ {(u3, u2, r, c)} end

post (u3, u2, r, c) /∈MLD ∧ (u3, u2, r, c) ∈ ULD

Permission-Specific Delegation Operators

In this category, we discuss permission specific operator. The Non-Delegable Permission

Delegation Operators (NDPD) will mutate a permission delegation by changing the

delegated permission from delegable to non-delegable.

Definition 5.19. NDPD(u1, u2, p, c) : −
pre (u1, u2, p, c) ∈MLD ∧ (u1, u2, p, c) ∈ ULD

body MLD := MLD \ {(u1, u2, p, c} end

post (u1, u2, p, c) /∈MLD ∧ (u1, u2, p, c) ∈ ULD

Multiple Delegation Operator Tests should reveal problems in ensuring that the

number of concurrent delegations of a specific role/permission does not exceed the
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threshold defined for it at the master level. To simulate the case where adding a new

delegation will make that number exceeds a pre-define threshold of a role/permission,

we introduce Multiple Delegation Operator (MultiD).

Definition 5.20. MultiD(countDelegation(u1, p, c) < Nm) : −
pre (u1, u2, p, c) ∈MLD ∧ countDelegation(u1, p, c) = Nm

body ULD := ULD ∪ {(u1, u2, p, c)} end

post (u1, u2, p, c) ∈ ULD ∧ countDelegation(u1, p, c) = Nm + 1

Multi-step Delegation Operator Tests should also reveal problems in re-delegation

of permissions and roles. Some roles and permissions can be defined as re-delegable

only after a limited number of times. We mutate the policy by re-delegating a role or

permission that is not re-delegable and vice versa. In the mutated policy the delegatee

will take the role/permission of delegator. Similarly the role and permissions that should

not be redelegated are mutated by re-delegating them. The Re-delegation Operator

(ReD) add a new delegation rule into the policy where the delegating permission/role

must not be re-delegated any more (stepCounter = 0).

Definition 5.21. ReD(stepCounter(u1, p, c)) : −
pre (u1, u2, p, c) ∈MLD ∧ stepCounter(u1, p, c) = 0

body ULD := ULD ∪ {(u1, u2, p, c)}; stepCounter(u2, p, c) := stepCounter(u1, p, c)− 1

end

post (u1, u2, p, c) ∈ ULD ∧ stepCounter(u2, p, c) = −1

Delegation Removal Operators Tests should be able to detect that a delegation rule

is missing. We introduce the Delegation Removal Operator (DR) that removes one of

the delegation rules.

Definition 5.22. DR(u1, u2, p, c) : −
pre (u1, u2, p, c) ∈ ULD

body ULD := ULD \ {(u1, u2, p, c} end

post (u1, u2, p, c) /∈ ULD

All the delegation mutants defined in this section are derived from basic delegation types

as well as various (advanced) well-known delegation features. Thus, we believe they are

representative for testing delegation policies. A demonstration example of using some

of these mutants is given in the next section.

5.7.4 Demonstration of Testing Delegation Policy Enforcement

In this section, we demonstrate how the proposed mutation analysis approach has been

applied on the prototype system LMS discussed in Section 5.5.
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Figure 5.11: Mutation Process for testing Delegation Policy enforcement

Figure 5.11 gives an overview of the mutation process for testing delegation. Based on

the mutation operators presented in Section 5.7.3 our delegation policy can be easily

mutated. Via the model-driven framework described above, those mutated policies can

be automatically enforced in the running system.

We performed mutation analysis on the examples described in Section 5.3. We used those

three delegation situations to demonstrate the application of the proposed approach. We

chose five test cases to test these three types of delegation of our running example. Table

5.4 gives an overview of them.

In case of delegation 1, Bill (Director) delegates his permission consultPersonnelAccount

to Bob (Secretary). This simple delegation is mutated in two different ways, first re-

placing Bill by Sam who is an administrator (by using RDM) and then by replacing

consultPersonnelAccount with another permission (using PDM), e.g. consultBorrower-

Account. We created one test case (TC1) to test if Bob can do consultPersonnelAccount

after enforcing the delegation rule. The test case was able to kill the second mutant

because Bob was not delegated consultPersonnelAccount but consultBorrowerAccount.

However, it did not kill the first mutant because Sam also has the right consultPerson-

nelAccount as Bob. Thus, Sam’s rights including consultPersonnelAccount have been

delegated to Bob, that made him accessible to consultPersonnelAccount.
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Table 5.4: Some preliminary mutation analysis results

Test Case Killed Mutants Live Mutants
Test Case-1 PDM (wrong permission mutant) RDM (delegator fault)
Test Case-2 PDM (wrong permission) RDM (delegator replaced)
Test Case-3 T2G (wrong type of delegation) PDM, RDM (wrong delegator, permission)
Test Case-4 PDM (permission replaced) TDM (CE,CR)
Test Case-5 TDM (CE,CR) PDM, RDM

In case of delegation 2, we use two test cases to test this delegation. One (TC2) is used

to test the correct enforcement of the delegated permission (createBorrowerAccount). It

resembles the test case for delegation 1, in which we test right allocation of permission.

Similarly, it detects mutant in where a wrong permission is inserted (PDM) but fails

to kill mutant when the delegator is replaced (RDM). The other test case (TC3) is

used to test transfer (monotonicity) property of the delegation, i.e. Alice cannot use

createBorrowerAccount while transferring it to Jane. For this case, we used T2G to

change the type of delegation 2 from transfer to grant. TC3 did kill the mutant of T2G

but could not kill the other mutants of PDM and RDM because in those mutants Alice

cannot use createBorrowerAccount.

We test delegation 3 in a temporal context. We chose two test cases (TC4 and TC5) to

kill the four mutants of this delegation. Two mutants are created by injecting permission

and delegator related faults (PDM and RDM). The other two mutants are created by

reducing and expanding the duration of a temporal delegation (TDM). We created a

test case (TC4) similar to TC1. The other test case (TC5) is designed to detect if

enforcement of delegation 3 is correct during its active duration. TC5 kills TDM but

leaves undetected the mutants of PDM and RDM. Vice versa, TC4 cannot kill the

mutant of TDM.

5.7.5 Related Work

Testing of access control policy is a relatively new domain. Some work is available on

testing of access control policy with XACML. Martin and Xie [146] propose a fault model

for access control policies based on XACML. This fault model was then used to measure

the effectiveness of their test cases. The fault model considers access control features

composed of permissions and prohibitions. Hu et al. [56] elaborate the conformance

checking of access control policy. Other approaches try to test a policy by using state

machines. The main focus of such approaches is the generation of test cases for access

control policies [141], [148]. To the best of our knowledge, there has not been any



www.manaraa.com

Chapter 5. MDS with Modularity for Dynamic Adaptation 118

approach dedicated to testing delegation enforcement taking into account an extensive

delegation model like ours.

Le Traon et al. [139] establish a mutation analysis approach for performing security

testing. Xu et al. [238] propose a model based testing approach for access control

policies. They use both the policy and its contracts implemented in a number of industry

usable languages. The test adequacy is also measured through mutation analysis. El

Rakaiby et al. [70] use mutation analysis to test obligations. Their approach (not

model-based) is on the same lines with the one proposed here except that their focus

is obligation and our focus is delegation. However, there is a big difference because

delegation and obligation are two different aspects. Especially, because of the “meta-

level” character of delegation w.r.t access control, applying mutation analysis for testing

delegation enforcement has to take into account different delegation features in the whole

process. Moreover, our mutation analysis approach bases on our model-driven framework

showed in Section 5.4 making it easy to leverage model-based testing techniques.

5.7.6 Summary

The process of delegating access rights forms one of the central issues in the administra-

tion of an access control policy. The delegation of authority gives users more rights over

protected resources so its undisputed implementation and enforcement require a rigorous

testing process. In view of this, the present section suggests the use of mutation analysis

to test the delegation policy enforcement. To achieve this, a careful and formal analysis

of different delegation features was performed. Based on this analysis a set of mutation

operators specific for delegation has been derived.

In future, a thorough empirical study using the proposed mutation operators is planed.

This will lead in identifying the most useful and effective mutation operators. Moreover,

we aim at investigating ways to automatically generate test cases for killing the proposed

mutants. Towards this direction we aim at extending existing approaches [195, 194] to

deal with delegations. Finally, the integration of model-based testing with the suggested

mutation approach will be also researched.

5.8 Conclusions

In this chapter, we have proposed an extensive Model-Driven Security approach for

adaptive delegation in access control management. By giving a formalisation of access

control and delegation mechanisms, we introduced various advanced delegation features
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that would provide secure, flexible, and efficient access control management. It has

been shown that these advanced delegation features can be specified using our delega-

tion DSML. Our DSML supports complex delegation characteristics like temporary,

recurrence delegation, transfer delegation, multiple and multi-step delegation, etc. We

have also shown that revocation can be dealt with in a simple manner. Another main

contribution of this chapter is our adaptive delegation enforcement in which delegation

is considered as a “meta-level” mechanism that impacts the access control rules. A

complete model-driven framework has been proposed to enable dynamic enforcement

of delegation and access control policies that allows the automatic configuration of the

system according to the changes in delegation/access control rules. Moreover, our frame-

work also enables an adaptation strategy that better supports co-evolution of security

policy and business logic of the system. The model-driven framework proposed in this

chapter can be applied for securing (distributed) systems running on different adaptive

execution platform like OSGi (Equinox), or an optimised models@runtime framework

such as Kevoree. Our approach has been validated via three different case studies with

consideration of performance and extensibility issues. Furthermore, a mutation testing

approach has been integrated into this work that could provide the basis for building a

tool chain of MDS, from modelling till testing.
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Model-Driven Security (MDS) for secure systems development still has limitations and

open issues to be more applicable in practice. Our systematic review of MDS shows

that current MDS approaches have not dealt with multiple security concerns systemati-

cally. Besides, catalogs of security patterns which can address multiple security concerns

have not been applied efficiently. This chapter presents an MDS approach based on a

System of Security design Patterns (SoSPa). In SoSPa, security design patterns are col-

lected, specified as reusable aspect models (RAM) to form a coherent system of them

that guides developers in systematically addressing multiple security concerns. SoSPa

consists of not only interrelated security design patterns but also a refinement process

towards their application. We applied SoSPa to design the security of crisis management

systems. The result shows that multiple security concerns in the case study have been

addressed by systematically integrating different security solutions based on SoSPa.

120
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This work promotes not only modularity but also reusability with SoSPa and RAM in

the model-driven development of secure systems.

6.1 Introduction

Model-Driven Security (MDS) emerged more than a decade ago as a specialised Model-

Driven Engineering approach for secure systems development, but still has limitations

and open issues to be more applicable. Our recent systematic review of MDS [182]

shows that multiple security concerns have not been addressed systematically by exist-

ing MDS studies. Indeed, interrelations or dependencies among security solutions have

not been considered formally, systematically by current MDS approaches. Developing

modern secure systems must always address multiple security concerns to minimise dif-

ferent security leaks and to make these systems resilient to different security attacks. A

solution to address a specific security concern often depends on other solutions address-

ing other security concerns. For instance, most authorisation mechanisms depend on

authentication mechanisms because before an authorisation decision, the authorisation

mechanism should have known the identity of the requester. Authentication mechanisms

often rely on encryption mechanisms, especially for distributed systems. Furthermore,

there could be a lot of different variations of security solutions to address the same se-

curity concern. All urge for an MDS approach that can systematically address multiple

security concerns, considering interrelations among security solutions and their variants.

On the other hand, from security engineering’s point of view, one of the best practices

is the use of security patterns to guide security at each stage of the development pro-

cess [211]. Patterns are applied in the different architectural levels of the system to

realise security mechanisms. So far, catalogs of security patterns are the most acces-

sible, well organised, documented resources of different security solutions for different

security concerns, e.g. [72, 220, 211]. But the results of two relevant empirical studies

[241, 240] have shown that using existing catalogs of security patterns does neither im-

prove the productivity of the software designer, nor the security of the design. Indeed,

security patterns could be applied at different levels of abstraction, e.g. architectural

design rather than detailed design. Moreover, the levels of quality found in security pat-

terns are varied, not equally well-defined like software design patterns [95]. Particularly,

many security patterns are too abstract or general, without a well-defined, applicable

description. There is also a lack of coherent specification of interrelations among security

patterns, and with other quality properties like performance, usability. In some catalogs,

each security pattern is described having its related patterns, and possible impacts on

other quality properties mentioned, but without any more practical details. To the best
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of our knowledge, none of existing MDS approaches has proposed a System of Secu-

rity design Patterns which provides not only well-defined security design patterns but

also interrelations among security patterns that can guide developers in systematically

dealing with multiple security concerns.

In this chapter, we propose an MDS framework based on a System of Security design

Patterns (SoSPa) that allows practitioners to systematically address multiple security

concerns in secure systems development. Our security patterns in SoSPa are theoret-

ically based on well-known security design patterns (e.g. in [72, 220, 211]). They are

collected, specified as reusable aspect models (RAM) [122] to form a coherent system

of them. While not only specifying security patterns at the abstract level like in secu-

rity patterns catalogs, SoSPa also provides a refinement process supported by RAM to

derive the detailed security design patterns closer to implementation. In other words, a

software designer can reuse our security design patterns that are specified at different

abstraction levels as RAM models. By using SoSPa, an integrated security solution

dealing with multiple security concerns can be systematically engineered into a system.

Not only the security design patterns but also their interrelations are specified in SoSPa.

Based on SoSPa, conflicts and inconsistencies among the applied security solutions in

a system design can be detected, resolved, or eliminated systematically. This may help

to improve the security in a system design against different security threats. Because

we propose an MDS development framework, SoSPa is built on a meta-model, which

is extended from RAM meta-model. Our MDS framework allows selecting, refining,

composing security design patterns to systematically build security solution models,

and then automatically integrating them into a target system design. The contribution

of this chapter is three fold: 1) hierarchical RAM models with a refinement process

for specifying security design patterns from abstract level till detailed design level; 2)

explicitly specified interrelations among security design patterns for systematically deal-

ing with multiple security concerns; 3) an MDS framework supporting secure systems

development based on SoSPa.

In the remainder of this chapter, Section 6.2 provides some fundamental concepts and

motivational examples for our MDS approach. Then, we present our MDS approach

based on SoSPa in Section 6.3, and some key security design patterns of SoSPa in

Section 6.4. Section 6.5 shows how our approach has been evaluated and discussed. The

position of this work compared to related work is given in Section 6.6. Finally, Section

6.7 presents our conclusions and future work.
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6.2 Background and Motivational Examples

We briefly recall RAM approach and why RAM is a good candidate for specifying a

system of security design patterns. Then, we discuss some motivational examples for our

work.

6.2.1 Reusable Aspect Models

RAM [122] is an aspect-oriented multi-view modelling approach with tool support for

aspect-oriented design of complex systems. In RAM, any concern or functionality that

is reusable can be modelled using class, sequence, and state diagrams in an aspect

(RAM) model. A RAM model can be (re)used within other models via its clearly

defined usage and customisation interfaces [13]. The usage interface of a RAM model

consists of all the public attributes and methods of the class diagrams in the model.

The customisation interface of a RAM model consists of all the parameterised model

elements (marked with a vertical bar |) of the partially defined classes and methods

in the model. A RAM model can be (re)used by composing the parameterised model

elements with the model elements of other models. A RAM model can also reuse other

RAM models in a hierarchical way. RAM weaver is used to flatten aspect hierarchies

to create the composed design model.

We find that security patterns can be well specified by using RAM approach. RAM’s

multi-view modelling ability make it possible to capture even complex semantics of

security patterns. The hierarchical modelling support of RAM enables a refinement

process in which security patterns can be refined from abstract level till detailed design

level. Fig. 6.1 shows a RAM model of a Session pattern which reuses the generic RAM

model of Map in Fig. 6.2 (or ZeroToManyAssociation alternatively, Fig. 6.3) [122].

The RAM model of Map is composed of a generic data container |Data using a “Map”

structure to store data in pairs of |Key and |Value. Session reuses Map by composing

parameterised elements of Map with model elements of Session as can be seen in the

“Map instantiation” box. For example, the mapping |Value to |Attribute means that

attributes in a session are stored as |Value objects managed by the Map structure.

The |Attribute element itself is a parameter. Any object can be stored in a session

by mapping it to the |Attribute parameter. The RAM model of Session itself has

the customisation interface comprises the parameterised classes |Session, |SessionID,

|Attribute, and |AttributeType. For example, |SessionID is a parameterised class

which will be instantiated as a unique identity associated with a session.
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aspect Session depends on (Map xor ZeroToMany)
structural view

|Session
|SessionID
|Attribute

|AttributeType

Map instantiation
|Data → |Session

|Key → |AttributeType
|Value → |Attribute

Op: add → addAttribute
Op: getValue → getAttribute

+ |SessionID getSessionID()
+ addAttribute()
+ getAttribute()

- |SessionID id
|Session |SessionID

|Attribute

|AttributeType

Figure 6.1: Aspect Session pattern

6.2.2 Motivational Examples

This section first recalls the case study of designing and developing Crisis Manage-

ment Systems (CMS), particularly a Car Crash Crisis Management System (CCCMS)

described in [125]. Next, CMS’s potential misuse cases related to multiple security

concerns are described. Then, we show why dealing with multiple security concerns

systematically is very hard, even by leveraging security patterns in existing catalogs.

Briefly mentioning, in CMS a crisis can be created, processed by executing the rescue

missions defined by a super observer, and then assigning internal and/or external re-

sources. Fig. 6.4 shows a partial design of CMS, for creating a rescue mission. CMS are

also security-critical systems whose different users must be authenticated, authorised

to execute different tasks, sensitive data being communicated via different networks

must be protected, and responsibility of users must be clearly traced. In [125], only a

simple use case for CMS user authentication is provided. We show different security

threats/misuse cases of CMS (informally) as follows.

Misuse cases related to user accounts, access control : [MUC-A1] An attacker imperson-

ates a CMSEmployee after obtaining the user password by guess and try; [MUC-A2] A

colleague of an authenticated user misuses the system on the authenticated user’s work-

ing device while it is being left unattended and accessible; [MUC-A3] A CMSEmployee

gains disallowed access to the protected resources. CMSEmployees must only have access

rights according to their assigned roles; [MUC-A4] A CMSEmployee has access rights

to the system as a FirstAidWorker but also a SuperObserver. Conflict-of-interest roles,

e.g. FirstAidWorker and SuperObserver, cannot be assigned to the same user.

Misuse cases related to accountability data: [MUC-B1] A CMSEmployee has received

mission information concerning a car crash but ignores or overlooks some crucial infor-

mation, and does not accept the mission. The rescue mission fails. When confronted,

the CMSEmployee denies having received the mission information. [MUC-B2] A Super-

Observer wrongly created a rescue mission which led to its failure. The SuperObserver

manages to delete the corresponding log entry of his wrong action, and denies it.
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aspect Map

structural view

message view initializeAssociation

caller: Caller

new:
|Datacreate(..)

Pointcut Advice

|Data
|Key

|Value

1
myMap

1add(|Key key, |Value val)
remove(|Key key)
Set<|Keys> getKeys()
|Value getValue(|Key k)

 

|Data

caller: Caller

new:
|Datacreate(..)

Binding

caller → *

Caller → *

new → *

Any  getKeys

state view |Data

myMap:
Mapcreate()

state view Map

Existing

create

remove

insert

destroy

message view add

caller: Caller target: |Data

add(|Key key, |Value val)

Pointcut Advice

caller: Caller target: |Data

add(|Key key, |Value val))

Binding

caller → *

Caller → *

target → *

myMap:
Map

insert(key, val)

message view remove

caller: Caller target: |Data

remove(|Key key)

Pointcut Advice

caller: Caller target: |Data

remove(|Key key)

myMap:
Map

remove(key)
Binding

caller → *

Caller → *

target → *

message view cleanup

caller: Caller target: |Data

destroy(..)

Pointcut Advice

caller: Caller target: |Data

destroy(..)

myMap:
Map

destroy()

Binding

caller → *

Caller → *

target → *

|Value

Pointcut

AddAllowed

RemoveAllowed

Any

Advice

AddAllowed

add

RemoveAllowed

remove

Map |Key

Figure 6.2: Aspect Map [122]

Misuse cases related to transmitted data: [MUC-C1] An attacker intercepts usernames

and passwords barely transmitted from client to server to impersonate a valid CMSEm-

ployee; [MUC-C2] An attacker intercepts the mission information about a crisis barely

transmitted from the system to CMSEmployee. Similarly, an attacker may intercept

victim’s identity and/or medical history information transmitted from the Hospital-

ResourceSystem to the CMS and/or from the CMS to a FirstAidWorker. Advanced
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aspect ZeroToManyAssociation

structural view

message view initializeAssociation

caller: Caller
new:
|Data

new := create(..)

Pointcut

Advice

|Data
|Associated

caller: Caller
new:
|Data

new := create(..)

Default Instantiation
caller → *
Caller → *
new → *

Any  getAssociated

state view |Data

mySet:
Set<|Associated>

mySet := create()

state view Set<|Associated>

Existing

create/size:=0

remove[size>0]
/size--

add/size++

delete

message view |Data.add

caller: Caller target: |Data
add(|Associated a)

Pointcut Advice

caller: Caller target: |Data
add(|Associated a)

Default Instantiation
caller → *, Caller → *, target → *

mySet:
Set<|Associated>

insert(a)

message view |Data.remove

caller: Caller target: |Data
remove(|Associated a)

Pointcut Advice

caller: Caller target: |Data
remove(|Associated a)

mySet:
Set<|Associated>

remove(a)

message view cleanup

caller: Caller target: |Data
delete(..)

Pointcut Advice

caller: Caller target: |Data
delete(..)

mySet:
Set<|Associated>

delete()

Pointcut

AddAllowed

RemoveAllowed

Any

Advice

AddAllowed
add

RemoveAllowed

remove

Default Instantiation
AddAllowed → *

RemoveAllowed → *
Any→ *

1
mySet

0..*
+ add(|Associated a)
+ remove(|Associated a)
+ Set<|Associated> getAssociated()

 
|Data

|Associated~ Set create()
~ add(|Associated )
~ remove(|Associated)
~ delete()

int size
Set |Associated

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Figure 6.3: Aspect ZeroToManyAssociation [122]

attacker even could modify the transmitted victim’s medical history information.

For most security experts, not saying security novices, finding the best possible solu-

tions addressing multiple security concerns, e.g. described in the misuse cases, and

integrating them properly into the CCCMS would be a very big challenge. Developing

and integrating different security solutions addressing multiple security concerns into a

system is hard, making them work together consistently is harder. Leveraging security

patterns seems to be a good approach for practitioners because security patterns are
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create(Crisis, EmergencyLevel, 
MissionDetails)

 
Mission

boolean isAvailable()
contactAbout(Mission)
setStatus(EmplStatus, 
Mission)

available: boolean
CMSEmployee

createMission(SuperObserver, 
MissionKind, EmergencyLevel, 
MissionDetails)

 
CrisisManager

addMission(Mission)
 

Crisis

Crisis getCrisis()
 
SuperObserver

1
0..*0..* 0..1

observedCrisis

createMission(su: 
SuperObserver, 

kind: MissionKind, 
level: 

EmergencyLevel, 
details: 

MissionDetails)

: CrisisManager su: Super
Observer

m: Mission
currentCrisis: 

Crisis

currentCrisis 
:= getCrisis()

create(currentCrisis, 
level, details)

alt [not 
loggedIn]

addMission(m)

:Resource
Manager

initiateAssigment(m)

*

send(SMS)
 
SMSSender

destNumber
SMS

Request
LoginSMSsendMissionProposal

(PDA, Mission)

PDASender

empl: CMSEmployee
contactAbout(m)

: SMS
Sender

: PDASender

req: Login
RequestSMS

create(emplSMSNumber)

setStatus(contacting, m)

send(req)
 

[else] setStatus(proposing, m)

sendMissionProposal
(myPDAConnection, m)

find an employee (empl object) 
for executing the mission m

Figure 6.4: A partial design of CMS with createMission function [125]

fairly well documented to address different security concerns. Moreover, some security

patterns also contain some informal inter-pattern relations, and constraints regarding

other quality properties such as performance to guide the patterns selection process. For

tackling [MUC-A1], one may decide to use the patterns in [211], [72], e.g. to ensure the

complexity of user passwords, make password reset frequently, combine user passwords

with one-time-password (OTP). [MUC-A2] and [MUC-A3] can be mitigated by using

the patterns of access control in [72, 211, 220]. For tackling [MUC-B1] and [MUC-B2],

the Audit Intercepter and/or Secure Logger patterns [220], or the Security Logger and

Auditor pattern [72] can be used. For tackling [MUC-C1] and [MUC-C2], one may de-

cide to use the Secure Channel pattern or Secure Pipe pattern [220], or the TLS pattern

in [85].

But there is still a big gap between the intention and practical application of security

patterns. Security patterns are often too abstract with good intention but no clear se-

mantics that make them difficult to be implemented and applied, especially together.
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One can see that in existing catalogs of security patterns, e.g. [72, 220, 211], interrela-

tions among patterns and other constraints are only briefly mentioned but not concretely

specified to be applicable. All of these could lead to inappropriate implementation and

application of security patterns. For example, not well-thought design decision could

lead to a weak user passwords authentication solution that allows a FirstAidWorker to

guess and successfully impersonate a SuperObserver. Improperly integrating authen-

tication, user session, and authorisation solutions could lead to access rights misused,

and sensitive data leaked. More tricky, wrongly implementing an encryption chan-

nel for data transmission and also an auditing mechanism that intercepts and records

the transmitted data may result in encrypted log entries that are useless for auditing

purposes. Similarly, constructing a logging solution for accountability must be aware

of an existing authorisation solution in the same system to produce the logs correctly.

Depending on how these two work together, the logs might contain nothing, or meaning-

less info, or different types of info about successful executions of method calls, or failed

authentication/authorisation checks for the method calls, or sometimes also successful

authentication/authorisation checks. A sound approach for systematically addressing

multiple security concerns in secure systems development is needed, but has not existed

yet at least in the MDS research area.

6.3 Our Model-Driven Security Approach based on SoSPa

6.3.1 Overview of our approach

Our MDS approach is based on a System of Security design Patterns (SoSPa). Fig. 6.5

displays our meta-model of SoSPa (SoSPa-MM) that is an extension of RAM meta-

model [122]. The core elements of SoSPa-MM are depicted in white. The rest are core

elements of RAM meta-model. SoSPa aims at systematically addressing the globally

accepted security concerns such as confidentiality, integrity, availability, accountability.

Thus, SoSPa is composed of an extensible set of security solution blocks, e.g. authenti-

cation, authorisation, cryptography. Each security solution block consists of interrelated

security design patterns. To support the selection of security design patterns, we use

feature modelling as in software product line engineering to capture the variability and

interrelations of security patterns. Specified by a feature model-like diagram, each se-

curity solution block can be used to form a specific, customised security solution. Each

security design pattern in SoSPa contains all well-structured elements such as context,

problem, consequences as can be seen in well-documented security patterns of existing

catalogs. More than that, inter-pattern relations are captured and explicitly specified at

the conceptual level as well as model level by RAM models. Fig. 6.5 shows that each
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Figure 6.5: Meta-model of System of Security design Patterns (SoSPa-MM)

SecurityDesignPattern is associated with ReusableAspect(s) that realised the pattern.

In other words, security design patterns are specified as reusable aspect models (RAM)

to form a coherent system of them, i.e. SoSPa. The interrelations among security pat-

terns are categorised into five types as specified in RelationshipType. We capture the

core relation types among security patterns, i.e. depends on, benefits from, alternative

to, impairs, conflicts with. These relations can be transitive and/or symmetrical.

Five main security solution blocks of SoSPa are Authentication, Authorisation, Cryp-

tography, Auditing, and Monitoring as can be seen in Fig. 6.6. Derived from security

requirements, a customised security solution can be built up from a combination (OR

relation) of these security solution blocks. Each feature (node) of the feature model

can be associated directly with a RAM model. For example, Authentication feature is

directly specified by a RAM model named Authentication. The features with underlined

names are security patterns which can be refined by composing the hierarchical RAM

models realising them. For example, Security Session pattern is realised by the RAM

model SecuritySession, and also the other relevant RAM models like SessionManager,

Session. Some low-level features are not really security patterns but generic RAM mod-

els which help building security patterns, e.g. Map, ZeroToManyAssociation. Because

in SoSPa, security patterns are built on hierarchical RAM models (see Section 6.4), the

interrelations among security patterns are actually specified at the model/design level.



www.manaraa.com

Chapter 6. MDS based on A Unified System of Security Design Patterns 130

System of Security design Patterns

Password
Complexity

Authentication

Authentication 
Means

Hardware
Token 

Password
Reset

Direct
Authentication

Third Party 
Authentication

Security
Session

Biometrics

Password

Session
Timeout

Session
Manager

SessionSecureSession
Object

ZeroToMany Map

optional
required
alternative (XOR)

or (OR)

Interceptor

Transfer
Object

Authorization
Enforcer

Policy
Repository

PolicyBased
AccessControl

Authorization Cryptography Auditing Monitoring

Access
ControlList

Controlled
AccessSessionRBAC

Security
Session

LogManager

Secure
LogStore

Audit
InterceptorSecureLogger

Log
Factory

Secure
DataLogger

Load 
Balancer

Limited
Attempts

JAAS

SecurePipe
SecureStore

UIDGenerator

Cipher

MessageDigest
Signature

L1

L2

Traceable

Figure 6.6: A partial feature model of SoSPa

In other words, the interrelations are specified based on the relations of RAM models

that the security patterns are built on. We elaborate more on this in Section 6.3.3.

6.3.2 Pattern-Driven Secure Systems Development Process

This section presents the development process in three main stages, especially empha-

sising the selection and composition of security design patterns into a target system

design.

[Security threats identification& analysis] : This is not the focus of this work. We

assume that misuse cases are created in this stage. Attack models might be created from

risk analyses, e.g. using the CORAS framework as discussed in [85].

[Security design patterns selection and application]

Step 1 - Constructing security solutions from the security patterns in SoSPa:

For each security concern, the interrelations specified in the feature model (Fig. 6.6)

are used to select the most appropriate security design patterns, i.e., the pattern that

best matches with the context and the security problem, most satisfies the interrelations

with the other already selected security design patterns, and maximises the positive

impact on relevant quality properties like usability, performance. All the RAM models

of the selected security design patterns and other required RAM models are woven

into the RAM model of the top most feature in the hierarchy corresponding to the

security concern of the feature model. This step derives a detailed RAM design of a

customised security solution for the concern, including its customisation interface and

usage interface. For example, to construct a customised authentication solution, all the

selected features under Authentication feature are woven into it. The output of this step

is a complete RAM model, i.e. the woven RAM model of the authentication solution.
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This woven RAM model of the authentication solution later can be integrated into a

base system model via its customisation interface. More details can be find in the case

study described in Section 6.5.

Step 2 - Defining mappings to integrate the newly built security solutions

to a base system model: For each selected security pattern, use the customisation

interface of the generated design to map the generic design elements to the application-

specific context. This step generates the mappings of the parameterised elements in

the security design pattern with the target elements in the target system design. Any

constraints/conflicts between mappings of all the selected security design patterns need

to be resolved. Most constraints are predefined by SoSPa for the obvious interrelations

(e.g. L1 and L2 discussed in the case study). Some ad-hoc constraints might need to be

provided by the designer in some rare cases when the RAM weaver gives warning about

potential conflicts while weaving RAM models [122].

Step 3 - Weaving the security solutions into the base system model: All the

security solutions are automatically woven into the target system design. The mappings

from previous step are the input for this weaving process.

[Verification&validation of security patterns application] : Analyse the woven

secure system against the attack models obtained before. The attack models can be

used for formal verification of security properties in the woven model, or can be used for

test cases generation like in a security testing approach. This is part of future work.

6.3.3 Interrelations of Security Patterns in SoSPa

This section shows how five interrelations among security patterns at conceptual level

can be realised at detailed design (model) level in SoSPa.

6.3.3.1 Depend-on relation

Security pattern X depends on security pattern Y means that X will not function cor-

rectly without Y. This relation is not symmetrical, but transitive. In SoSPa, this relation

is specified as the mandatory “required” relation among RAM models that realise the

security patterns. Let security pattern X be realised by RAM model A. Security pat-

tern Y is realised by RAM model B. X depends on Y means that model A (directly or

indirectly) depends on (requires) model B. Thus, model A realising security pattern X

can only be applicable to any base system if all the RAM models that A depends on,

such as model B, have been woven into A. In Fig. 6.6, the patterns of Authorisation

and Auditing depends on the patterns of Authentication. That means security solution

of Authorisation must be completed by a security solution of Authentication.
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6.3.3.2 Benefit-from relation

Security pattern X benefits from security pattern Y means that implementing Y will

add to the value already provided by implementing X. At design level, X benefits from

Y if RAM model A realising X optionally depends on RAM model B realising Y. For

example, Authentication patterns can benefit from SecuritySession pattern. But it is up

to designers to decide if the chosen Authentication pattern needs to use SecuritySession.

6.3.3.3 Alternative-to relation

Security pattern X is alternative to security pattern Y means that X provides a similar

security solution like Y’s. The designer can choose either X or Y for addressing the

same security problem. For instance, DirectAuthentication pattern is alternative to

ThirdPartyAuthentication.

6.3.3.4 Impair-with relation

Security pattern X impairs with security pattern Y means that X and Y are not rec-

ommended together. In case X and Y are both selected for working together, they may

result in inconsistencies. A conflict resolution could be provided to make them work-

ing consistently together. For example, Load Balancer pattern impairs with Security

Session pattern. If no conflict resolution can be found, we say that X conflicts with Y.

6.3.3.5 Conflict-with relation

Security pattern X conflicts with security pattern Y means that implementing Y in a

system that contains X will result in inconsistencies. An example is that the Audit

Interceptor pattern could conflict with the SecureChannel pattern.

6.4 Security Design Patterns in SoSPa

This section presents some key security design patterns of SoSPa. More details can

be found in Appendix D. We show how hierarchical RAM models are used to specify

security patterns from abstract level till detailed design level. Besides, each security

pattern is presented with its interrelations to the others.



www.manaraa.com

Chapter 6. MDS based on A Unified System of Security Design Patterns 133

Password
Complexity

Authentication

Authentication 
Means

Hardware
Token 

Password
Reset

Direct
Authentication

Third Party 
AuthenticationSecurity

Session

JAAS
Authentication

Biometrics

Password
OR

Optional
Required

XORLimited 
Attempts

Figure 6.7: A feature model of Authentication

aspect Authentication depends on (optional LimitedAttempts, optional SecuritySession), 
(DirectAuthentication xor JAASAuthentication xor ThirdPartyAuthentication)

structural view

|ProtectedClass

+ boolean authenticate()
- boolean check()
+ boolean isAuthenticated()

 
Authentication

c: Caller

authenticate()

message view authenticate Pointcut Advice

target: Authentication

c: Caller
authenticate()

target: Authentication

SecuritySession instantiation
|CheckPoint → Authentication

Op: |login → authenticate
Op: |check → check

Op: |isLoggedIn → isAuthenticated

DirectAuthentication instantiation
|DirectAuthentication → Authentication

Op: |login → authenticate
Op: |check → check

ThirdPartyAuthentication instantiation
|Authenticator → Authentication

Op: |login → authenticate
Op: |check → check

Binding
 c → *

 Caller → *  

*
check()

+ * |m(…)
 
|ProtectedClass

message view method |m 
with authentication required

c: Caller

|m()

target: |ProtectedClass

Pointcut

Advice

alt [r ≠ false] *
throw new NotAuthenticatedException()

c: Caller
|m()

target: |ProtectedClass

s: Authentication
r := isAuthenticated()

 

LimitedAttempts instantiation
|LimitedAttempts → Authentication

Op: |m → authenticate
Op: |check → check

*

|m

Figure 6.8: Aspect Authentication

6.4.1 Authentication Patterns

Deciding which authentication mechanism to employ is very important because it might

influence other security mechanisms like authentication, encryption. Selecting an au-

thentication mechanism may affect the selection of other security mechanisms.
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aspect LimitedAttempts depends on Blockable

structural view
|LimitedAttempts

|m

+ * |m(…)
- boolean |check()

int maxAttempts
int failedAttempts

|LimitedAttempts

Blockable instantiation
|Blockable → |LimitedAttempts

caller: Caller

|m(…)

Pointcut

Advice
caller: Caller

Binding
caller → *
Caller → *
target → *

|m(…)

message view m is affected by Blockable.block

r := |check()

failedAttempts := 0

failedAttempts++

target: |LimitedAttempts

opt [failedAttempts > maxAttempts]

alt [r = true]

block()

return

else

target: |LimitedAttempts

*
|check()

*

Figure 6.9: Aspect LimitedAttempts adopted from [122]

aspect Blockable

structural view |Blockable

+ block()
+ unblock()
+ * |blockableMethod(..)

boolean blocked
|Blockable

message view 
blockMethod

caller: Caller target: |Authenticatable
* |blockingMethod(..)

Pointcut Advice

caller: Caller

Binding
caller → *
Caller → *
target → *

target: |Authenticatable
* |blockingMethod(..)

message view |blockableMethod is affected by blockMethod

alt [not blocked]

*
throw new BlockedException()

Figure 6.10: Aspect Blockable [122]

The main security patterns for authentication can be seen in Fig. 6.6. The Authentica-

tion feature is specified by a RAM model with the most basic authentication logic (Fig.

6.8). For every call to any protected method |m of any protected class |ProtectedClass,

the caller must be already authenticated before method |m is executed. There are two
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aspect DirectAuthentication depends on Map, Password
structural view

+ boolean |login()
- |check()
- Credential getCredential(Principal id)
+ void addCredential(Principal id, Credential cre)

 
|DirectAuthentication

Pointcut

s: |DirectAuthentication

Advicemessage view |login s: |DirectAuthentication

message view getCredential is Map.getValue

message view addCredential is Map.add

vc: Credential

vc := getCredential(p)

r := validate(cre)

+ boolean validate(Credential c)
 

Credential

Principal

Map instantiation
|Data → |DirectAuthentication
Op: getValue → getCredential

Op: add → addCredential
|Key → Principal

|Value → Credential

+ Principal getInputPrincipal()
+ Credential getInputCredential()

 
RequestContext

rc : RequestContext

p := getInputPrincipal()

cre := getInputCredential()

Password instantiation
PasswordManager → |DirectAuthentication

Password → Credential
UserID → Principal

Op: comparePassword → validate

c: Caller
|login()

c: Caller |login()

Binding
 c → *

 Caller → *

*

|check()

|check()
*

r

|DirectAuthentication

|login
|check

* *

Figure 6.11: Aspect DirectAuthentication

aspect ThirdPartyAuthentication
structural view

alt [returnedID = null] 

|ThirdPartyAuthentication
|Authenticator

|Identity

+ boolean login()
- check()

 
|Authenticator

Pointcut

s: Authenticator

Advicemessage view login
s: Authenticator

s: |ThirdParty
Authentication

returnedID := |remoteAuthenticate()

+ |Identity |remoteAuthenticate()
 

|ThirdPartyAuthentication

|Identity

c: Caller
c: Caller login()

false

|remoteAuthenticate

Binding
 c → *

 Caller → *

trueelse

login()

*

check()
 

check()

*

Figure 6.12: Aspect ThirdPartyAuthentication

optional features that Authentication can reuse: LimitedAttempts (Fig. 6.9) and Secu-

ritySession (Fig. 6.14). LimitedAttempts adopted from [122] specifies that an authenti-

cation request is blocked after some consecutive unsuccessful authentication attempts.

It reuses the Blockable aspect [122] (see Fig. 6.10).

The underlying authentication mechanisms are abstract and to be refined by composing
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the model elements |Authentication, |authenticate, and check with the parame-

terised elements of the selected RAM models, e.g. SecuritySession, DirectAuthentica-

tion that Authentication depends on. The feature model in Fig. 6.7 shows that designer

could choose different alternatives below the Authentication feature for designing a cus-

tomised authentication solution, e.g. DirectAuthentication, ThirdPartyAuthentication,

or JAASAuthentication [220].

Fig. 6.11 shows the RAM model of DirectAuthentication pattern which is based on the

Authentication Enforcer pattern in [220] and the Authenticator pattern in [72]. Request-

Context contains the user’s principal and credential extracted from the protocol-specific

request mechanism. An instance of RequestContext is often provided by a specific im-

plementation framework. We do not discuss this RequestContext class in details. By

using the input Principal, the DirectAuthentication retrieves the corresponding Creden-

tial from an identity store that it manages using a Map aspect. The input Credential is

checked against the retrieved Credential. Using DirectAuthentication requires designer

to decide on what kinds of shared secrets to be used for authentication. The abstract as-

pect AuthenticationMeans shows that share secrets could be user password, biometrics,

or hardware token (one time password, OTP). These features could be used together,

e.g. user password with OTP. If using user password for authentication, the Password

pattern (see Fig. D.1 in Appendix D) will be woven into the DirectAuthentication aspect.

Third-party authentication provider (ThirdPartyAuthentication, Fig. 6.12) can also be

used to validate client’s credentials. The main idea of this pattern is to map the authen-

tication process to a proxy to call the authentication method provided by a third-party

authentication provider. Shared secrets among the third-party provider and their clients

are invisible to the authentication solution being constructed.

On the other hand, session can bring more benefits to an authentication solution, e.g.

for maintaining an authenticated status. We describe security session patterns in the

next section. The SecuritySession pattern is optional to Authentication.

Note that the order of dependencies specified on the top of each RAM model is important

to make the patterns work consistently together. For example, the order of weaving

dependencies into Authentication must be from left-to-right, and then top-down, i.e.

LimitedAttempts, SecuritySession, DirectAuthentication. The orders of weaving are also

part of SoSPa to provide for designers. The RAM weaver can execute the orders of

weaving dependencies automatically. We elaborate more on this in the case study given

in Section 6.5.
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aspect SecureSessionObject depends on Session, 
(TransferObject xor Interceptor)
structural view

|SecureSessionObject
|SessionId

TransferObject instantiation

|SecureSessionObject Intercepter instantiation

Session instantiation
|Session → |SecureSessionObject

Figure 6.13: Aspect SecureSessionObject

6.4.2 Security Session Patterns

The feature model in Fig. 6.6 shows how the aspects related to security session are

organised. The patterns for security session are based on the Security Session pattern

in [211], the Controlled Access Session pattern in [72], and the Authentication Enforcer,

Secure Session Object patterns in [220]. In SoSPa, the SecuritySession pattern depends

on the SessionManager aspect for managing sessions. The designer can choose between

a generic Session pattern showed in Fig. 6.1 or the SecureSessionObject pattern [220].

The SecureSessionObject pattern is based on the Subject Description pattern in [201] and

the Secure Session Object pattern in [220]. It reuses the Session aspect by specifically

defining generic attributes of a security session. Logically, if the validation process in

authentication returned by the |check method is successful, a new session object is

created. Then, any security-related information can be stored in this object, e.g. the

validated Principal. The authenticated status is associated with the session as long as

the session is active. The SessionTimeout pattern provides a timing mechanism that

requests authenticating again if the corresponding session is expired.

The SecuritySession pattern in Fig. 6.14 shows how a SecuritySession is created and

used for maintaining the authenticated status of an object. After a |login request, the

CheckPoint first checks if the caller has already been authenticated by looking up in

the SessionManager for any SecuritySession associated to the caller. If none already

established session found, the validation process is performed by the check function.

This login function will be actually instantiated later, e.g. by the login method in

the DirectAuthentication aspect when both SecuritySession and DirectAuthentication

are woven into the Authentication aspect. If the validation process is successful, the

CheckPoint calls the SessionManager to create a new SecuritySession object and add

the validated Principal to this object.

The SessionManager in Fig. 6.15 reuses a generic Map aspect to control sessions. The

Key element of Map is instantiated with SessionID object. The Value element of Map

is instantiated with Session object. Via the SessionManager, sessions can be created,

retrieved, and disposed.
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aspect SecuritySession depends on SessionManager
structural view

|CheckPoint
|Principal

|Credential

message view login

SessionManager instantiation
|SessionManger → |SessionManger

|Session → |SecuritySession

cp: |CheckPoint

Pointcut Advice

SecuritySession
+ login()
- boolean check()
+ boolean isLoggedIn(SessionID sid)
+ logoff()

|CheckPoint
|Principal

|Credential

SessionID + SessionID getSessionId()

RequestContext

c: Caller

login()
opt [ses=null]

opt [r = true] 

cp: |CheckPoint

m: SessionManager

ses := createSession()
ses: SecuritySession

add(…)

rc: RequestContext

sid := getSessionId()
ses := lookupSession(sid)

c: Caller
login()

return sessionID ≠ null

r

*

check()

 

r := check()
Binding

caller → *
Caller → *

SessionManager

message views isLoggedIn, logoff is not presented here

Figure 6.14: Aspect SecuritySession

aspect SessionManager depends on Session, Map
structural view

|SessionManager
|Session

|SessionID

message view createSession

Map instantiation
|Data → SessionManager

|Key → |SessionID
|Value → |Session

Op: getValue → lookupSession
Op: remove → disposeSession

+ |SessionID createSession()
+ void disposeSession(|SessionID key)
+ |Session lookupSession(|SessionID key)

 
|SessionManager

message view lookupSession is Map.getValue

message view disposeSession is Map.remove

c: |Caller m: |SessionManager

createSession()

Pointcut Advice

c: |Caller m: |SessionManager

createSession()

new: |Sessioncreate()

add(key, new)

|Session

key

|SessionID

Session instantiation
|Session → |Session

|SessionID → |SessionID

key: |SessionID create()

Figure 6.15: Aspect SessionManager
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structural view

aspect Authorisation depends on Traceable, AuthorisationEnforcer, 
(optional AuthenticationDependence)

|ProtectedClass

+ boolean evaluateReq(Subject sbj, AccessRequest request)
 

Authorisationstructural view

AccessRequest

message view protected method |m 
depends on 
AuthorisationEnforcer.|requestAccess

Pointcut

caller: Caller t: |ProtectedClass

|m(…)

Binding
 caller → *
 Caller → *

Advice

alt [r=TRUE]

caller: Caller

t: |ProtectedClass

a: Authorisation

else

AuthorisationEnforcer 
instantiation

|AuthorisationEnforcer → 
Authorisation

Op: |requestAccess → 
 evaluateReq

rc: Request
Context

subj:= getSubject()

Subject

+ * |m(…)
+ AccessRequest createRequest(Method)

 
|ProtectedClass

+ Subject getSubject()

RequestContext

AuthenticationDependence instantiation
|ProtectedClass → |ProtectedClass

Op: |m → |m

throw new NotAuthorisedException()

* 

|m

Traceable instantiation
|Traceable → |ProtectedClass

Op: |m → |m
Op: createTrace → createRequest

|Trace → AccessRequest

req := createRequest(|m)

r := evaluateReq(subj, req)

|m(…)

Figure 6.16: Aspect Authorisation

6.4.3 Authorisation Patterns

As can be seen in Fig. 6.6, the Authorisation feature (pattern) optionally depends

on the Authentication feature (pattern) presented before. Fig. 6.16 shows the corre-

sponding Authorisation RAM model. Authorisation can be employed together with

Authentication if the optional AuthenticationDependence aspect is selected. Authentica-

tionDependence presented in Fig. 6.18 shows that authentication must be done before

the method |m called. The Authorisation RAM model itself contains a parameterised

Authorisation class with |evaluateReq function to evaluate any request AccessRequest

to method |m of a protected resource |ProtectedClass. The AccessRequest is created

with all necessary elements of a method call such as Method, AccessKind. Fig. 6.16

and Fig. 6.17 show that the generic Traceable aspect of RAM [122] is reused in Autho-

risation to create an AccessRequest. The |Subject requesting access is also obtained

from the RequestContext. The |Subject and the AccessRequest objects are used for

the access decision process managed by the Authorisation. If the request is granted, the

protected method |m will be executed. Otherwise, an authorisation exception will be

returned. The requestAccess method is refined further by the AuthorisationEnforcer

pattern.
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aspect Traceable depends on AccessClassified

+ Trace createTrace(Method)
+ * |m<AccessKind>(..)

 
|Traceable

caller: Caller target: |Traceable

|newT: Trace
                 newT := create(m, accessKind, target)

structural view

caller: Caller target: |Traceable

newT := createTrace(m)

Pointcut Advice

~ create(Method, AccessKind, |Traceable)
+ |Traceable getTarget()
+ AccessKind getAccessKind()

- Method method
- AccessKind accessKind

Trace

accessKind := 
getAccessKind(m)

1
target

|Traceable,
|m<AccessKind>

AccessClassified instantiation
|AccessClassified
→ |Traceable

|m<AccessKind>
→ |m<AccessKind>

Default 
Instantiation
caller → *
Caller → *
target → *

newT := createTrace(m)

message view createTrace

Figure 6.17: Aspect Traceable [122]

structural view

aspect  AuthenticationDependence depends on Authentication |ProtectedClass
structural view

message view protected method |m
Pointcut

caller: Caller t: |ProtectedClass

|m(…)
Binding

 caller → *
 Caller → *

Advice

caller: Caller

t: |ProtectedClass

+ * |m(…)
 
|ProtectedClass

Authentication instantiation
|ProtectedClass → |ProtectedClass

Op: |m → |m
Authentication → Authentication
Op: authenticate → authenticate

Op: isAuthenticated → isAuthenticated

a: Authentication
authenticate()

+ authenticate()
+ boolean isAuthenticated()

Authentication

|m

|m(…)

r := isAuthenticated()

Figure 6.18: Aspect AuthenticationDependence (renamed to L1 in Fig. 6.6)

The AuthorisationEnforcer pattern in Fig. 6.19 contains the AuthorizationEnforcer

class that processes any request access together with other RAM models such as Policy-

BasedAC, ControlledAccessSession. The AuthorizationProvider gets all the permissions

of the request subject and comes up with a decision on the request to be returned by the

AuthorizationEnforcer. The permissions of the request subject can be retrieved from a

policy manager like PolicyBasedAC pattern or from the cached data of the subject in

a secure session object (ControlledAccessSession pattern). These patterns are based on

the patterns in [211, 72, 220].
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structural view

aspect AuthorisationEnforcer depends on (PolicyBasedAC xor ControlledAccessSession) |AuthorisationEnforcer

+ boolean |requestAccess(Subject sbj, AccessRequest request)
 

|AuthorisationEnforcer Subjectstructural view

message view |requestAccess Pointcut

c: Caller a: |Authorisation
Enforcer

|requestAccess() Binding
 c → *

 Caller → *

Advice

c: Caller
s: Authorisation

Provider

a: |Authorisation
Enforcer

|requestAccess(sbj, req)

+ boolean decideAccess(Subject sbj, AccessRequest request)
- boolean combineDecisions(PermissionsCollection rights)

 
AuthorisationProvider

decideAccess(sbj, req)

PermissionsCollection
+ PermissionCollection getPermissions(…)

PermissionsManager AccessRequest

s := getPermissions()

r := combineDecisions()

PolicyBasedAC instantiation
|PEP →  |AuthorisationEnforcer
|PDP → AuthorisationProvider

|PolicyRepository → PermissionsManager
Op: |lookup → getPermissons

Permissions
Manager

r

r

|requestAccess

Figure 6.19: Aspect AuthorisationEnforcer

6.4.4 Auditing (Accountability)

In critical systems, the ability to keeping tracks of who did what and when is very

important. Security patterns for auditing can solve this accountability concern. The

RAM models for auditing and their interrelations specified in Fig. 6.6 are based on the

Secure Logger, Audit Interceptor patterns [220], and the Security Logger and Auditor

pattern [72]. Two common patterns for auditing are SecureLogger and AuditInterceptor

in which the latter depends on the former. Fig. 6.20 shows the structural view and

message view of the SecureLogger pattern. The classes and methods being traced are

mapped to the parameterised Traced class and method |m. Once the Trace object and

the identity of caller are created, they are sent to the SecureLogger for being logged.

How a Trace object can be created is specified by the generic Traceable aspect mentioned

before. In Fig. 6.17, method createTrace returns a Trace object containing the target

(Traceable) being traced, the method called, and the accessKind. Three kinds of access

are specified in the AccessClassified aspect [122]: read, write, update. The SecureLogger

creates the corresponding LogEntry object with the Trace, the identity of caller, and a

time stamp. The LogEntry object should be processed into a LogMessage depending on

the format required by the LogManager aspect. The LogManager is responsible for the

actual serialisation of the log (using LogFactory aspect) to a secure storage (either using

SecureLogStore pattern or SecureDataLogger pattern [220]).
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structural view

aspect SecureLogger depends on Traceable, LogManager, (optional AuthorisationDependence, …)
|Traced

+ void log(Subject id, Trace action)
- LogMessage process(LogEntry aLog)

 
SecureLogger

structural view

 
+ void log(LogMessage msg)

LogManager

message view |m affected by 
|Traceable.createTrace, 
|LogManager.|log

Pointcut

caller: Caller target: |Traced

|m(…) Binding
 caller → *
 Caller → *

Advice

caller: |Caller

logger: 
SecureLogger

log(id, trace)

target: |Traced

rc: Request
Context

id:= getSubject()

aLog: 
LogEntry

create()

set(…)

Traceable instantiation
|Traceable → |Traced

Op: |m → |m

+ * |m<AccessKind>(…)
- logTrace()

|Traced

Subject

 + set(…)

- Subject id
- Trace action
- DateTime time

LogEntryLogMessage

|m(…)

trace := createTrace(|m)

msg := process(aLog)

logMan: 
LogManager

log(msg)

LogManager instantiation
|LogManager → LogManager

|SecureLogger → SecureLogger
Op: |log → log

+ Subject getSubject()

RequestContext

|m

logTrace()

AutthorisationDependence instantiation
|ProtectedClass → |Traced

Op: |m → |m
Op: |logTrace → logTrace

*

Figure 6.20: Aspect SecureLogger

SecureLogger in Fig. 6.20 is a generic logger that just simply logs a trace whenever

the method |m is called. There is no specification on whether |m has been successfully

authenticated and/or authorised, or actually executed. Different variations of when and

how a trace is logged are provided in different logging strategy aspects. For example,

aspect AuthorisationDependence in Fig. 6.21 specifies that a trace is logged only if the

caller to |m has been authorised successfully and |m has been executed.

To summarise, we have presented some key security patterns of SoSPa and their depen-

dencies to each others, and to other RAM models. Note that the order of dependencies

on top of each RAM model matters to the order of weaving. How dependencies are

woven into a RAM model are specified by instantiation mappings.

6.5 Evaluation and Discussion

6.5.1 Case Study and Results

By using SoSPa with the patterns selection and application process described in Sec-

tion 6.3.2, multiple security concerns/misuse cases of CMS can be addressed/mitigated
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structural view

aspect AuthorisationDependence depends on Authorisation |ProtectedClass
structural view 

message view |m affected by 
Authorisation.evaluateReq Pointcut

caller: Caller target: |Traced
|m(…)

Binding
 caller → *
 Caller → *

Advice

opt [r=TRUE]

caller: |Caller
target: |Traced

+ * |m(…)
- |logTrace()

|ProtectedClass

|m(…)

|m
|logTrace

Authorisation instantiation
Authorisation → Authorisation

Op: evaluateReq → isAuthorised
|ProtectedClass → |ProtectedClass

Op: |m → |m

a: |Authorisation

r := isAuthorised()

*

+ boolean isAuthorised(…)
 

Authorisation

|logTrace()

 
 

|logTrace()

*begin 
authorisation

*

execute |m

Figure 6.21: Aspect AuthorisationDependence (renamed to L2 in Fig. 6.6)

aspect AccessClassified

structural view

+ AccessKind getAccessKind(Method)
+ * |m<AccessKind>(..)

 
|AccessClassified

|AccessClassified, 
|m<AccessKind>

Read
Write
Update

 

<<enumeration>>
AccessKind

Figure 6.22: Aspect AccessClassified [122]

properly. We demonstrate the three main steps of the patterns selection and application

process as follows.

Step 1 - Constructing security solutions for CMS from the security patterns in SoSPa:

First, authenticating CMS users is the most fundamental security requirement of CMS

as described in [125]. Fig. 6.6 shows that after selecting the Authentication feature,

the designer can choose to employ DirectAuthentication or JAASAuthentication. Third-

PartyAuthentication is not a solution because CMS must use its own identity store for

authenticating CMS users. Besides, LimitedAttempts, which specifies that an authenti-

cation request is blocked after some consecutive unsuccessful authentication attempts,

could be already selected to partially mitigate [MUC-A1]. Assuming the designer se-

lected DirectAuthentication, now he selects Password because using user password is a

concrete requirement of CMS. Moreover, a strong user password solution must be em-

ployed to better mitigate [MUC-A1]. PasswordComplexity [211], PasswordReset [192]

can be used together with Password pattern. One of the best solutions to mitigate

[MUC-A1] is to use Password in combination with HardwareToken (OTP) [211]. To
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mitigate [MUC-A2], SecuritySession and also SessionTimeout need to be employed in

the authentication solution. The SessionTimeout aspect makes sure that a session is

invalidated (e.g. user is automatically logged off) if its inactive time exceeds a predefined

threshold. When SecuritySession is selected, it means all the aspects that it depends on,

e.g. mandatory SessionManager, are also selected and composed into it. This hierarchi-

cal aspects composition is applied to every feature in the feature model. Thus, all the

selected features below Authentication are automatically woven into it, according to the

order of dependencies specified on top of Authentication, and the model elements map-

pings defined in the corresponding RAM models. For example, once LimitedAttempts

is selected, it is woven into Authentication first. In this way, a concrete authentication

solution, namely wovenAuthentication RAM model has been built and ready to be inte-

grated into CMS base design to fulfil its user authentication requirements and mitigate

its potential misuse cases.

Similarly, a concrete authorisation solution can be built to mitigate the misuse cases

[MUC-A3] and [MUC-A4]. Assuming AuthorisatonEnforcer with PolicyBasedAccess-

Control and Role-Based Access Control (RBAC ) have been selected. All the selected

RAM models for the authorisation solution such as AuthorisatonEnforcer, PolicyBasedAc-

cessControl are woven into the Authorisation RAM model to create a wovenAuthorisa-

tion RAM model.

And so on, misuse cases [MUC-B1] can be mitigated by constructing a suitable Auditing

solution, e.g. using SecureLogger. [MUC-B2] is also mitigated by using SecureLogger

because either SecureLogStore or SecureDataLogger is employed to protect the logged

data from being tampered. All the selected RAM models for SecureLogger are woven

into the SecureLogger RAM model, resulting in a wovenAuditing RAM model.

To mitigate misuse cases [MUC-C1] and [MUC-C2], SecureChannel pattern [220], or

TLS pattern as presented by [85], can be employed to secure transmitted data.

Step 2 - Mapping the security solutions to the CMS base design: For each security

solution built in the previous step, its parameterised model elements can be mapped to

the target elements in the CMS design to integrate the security solution into CMS. Note

that the customisation interface of the top-most RAM model (e.g. Authentication) in the

hierarchy of a security solution is also the customisation interface of that security solution

(wovenAuthentication). Let us make the createMission function of CMS secure and

its execution logged. We would come up with the following mappings:

wovenAuthentication.|ProtectedClass→CrisisManager

wovenAuthentication.|m→createMission

wovenAuthorisation.|ProtectedClass→CrisisManager

wovenAuthorisation.|m→createMission
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wovenAuditing.|Traced→CrisisManager

wovenAuditing.|m→createMission

As we see, the constraints among the mappings have to be resolved. From the security

requirements of CMS, the authorisation solution has to work with the existing (already

built) authentication solution. Thus, the AuthenticationDependence feature (or L1 in

Fig. 6.6) must also be selected for the authorisation solution wovenAuthorisation.

That means wovenAuthentication is woven into AuthenticationDependence, and their

woven RAM model is then woven into wovenAuthorisation to create a wovenAuthen-

ticationAuthorisation. By doing so, the constraints among wovenAuthentication

and wovenAuthorisation have been resolved. Similarly, to log a wrongly created res-

cue mission action of a SuperObserver in CMS as described in [MUC-B2], the Autho-

risationDependence feature (or L2 in Fig. 6.6) is needed for wovenAuditing. By weav-

ing wovenAuthenticationAuthorisation with AuthorisationDependence and then into

wovenAuditing to create a wovenAllSolutions model, all the constraints have been re-

solved. After that, the instantiation directives for integrating all the security solutions

into the CMS base design are straight forward:

wovenAllSolutions.|Traced → CrisisManager

wovenAllSolutions.|m → createMission

Step 3 - Weaving the security solutions into the CMS base design: This step can be

automatically done by the RAM weaver once all the mappings and constraints have been

specified in the previous step. Fig. 6.23 shows final woven model. For readability, we

only display the key parts of the customised authentication, authorisation, and auditing

solutions woven into the base model. The woven model shows that the createMission

action now can only be executed by an authenticated user that is authorised to execute

this task, and a trace of this action is securely logged. Of course, a formal analysis

of the woven model against attack models could show a formal proof that the woven

model is resilient to different attacks. Constructing attack models in a similar way as

security solution models and then employing formal analysis techniques could be a good

direction for future work.

6.5.2 Discussion

Our work raises an important question related to the abstraction level proposed by

SoSPa. More specifically, the question is how can we guarantee that the level of details

is sufficient? Or how to guarantee that there is no need to develop new RAM models

or security patterns? Our answer is that the required level of details strongly depends

on the expected use of SoSPa. Obviously, if SoSPa is used to generate code that can
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alt [r=TRUE]

create(Crisis, EmergencyLevel, 
MissionDetails)

 
Mission

boolean isAvailable()
available: boolean

CMSEmployee

createMission(SuperObserver, MissionKind, EmergencyLevel, MissionDetails)
+ AccessRequest createRequest(Method)
+ Trace createTrace(Method)

 
CrisisManager

addMission(Mission)
 

Crisis

Crisis getCrisis()
 
SuperObserver

1
0..*

0..* 0..1
observedCrisis

c: Caller

createMission()

: CrisisManager

su: SuperObserver

m: Mission

currentCrisis := getCrisis()

create(currentCrisis, 
level, details)

+ boolean authenticate()
+ boolean isAuthenticated()

 
Authentication

logger: SecureLogger

log(id, trace)

id:= getSubject()

trace := createTrace(createMission)

logTrace()
rc: RequestContext

*The remaining of wovenAuditing 
with SecureLogger pattern, etc.

*

The remaining of the 
createMission function

 

a: Authorisation

else

rc: RequestContext

subj:= getSubject()

throw new NotAuthorisedException()

req := createRequest(|m)
r := evaluateReq(subj, req)

alt [r ≠ false]

throw new NotAuthenticatedException()

s: Authentication

r := isAuthenticated()

 

authenticate()

* The remaining of the 
wovenAuthentication design

*
The remaining of the 

wovenAuthorisation design

 

else

 

+ boolean evaluateReq(Subject sbj, AccessRequest request)
 

Authorisation

AccessRequest

+ boolean decideAccess(Subject sbj, AccessRequest request)
- boolean combineDecisions(PermissionsCollection rights)

 
AuthorisationProvider

+ void log(Subject id, Trace action)
- LogMessage process(LogEntry aLog)

 
SecureLogger

 
+ void log(LogMessage msg)

LogManager

woven
Auditing

woven
Authorisation

woven
Authentication

create
M
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Figure 6.23: Automatically Woven Secure CMS Model

run, the level of details should be very high. If the goal is to generate a code skeleton

of a secure system and test cases, the level could be lower. The level of details of

RAM models in SoSPa is not high enough for full code generation, but high enough for

specifying all the important semantics of security patterns and their interrelations. That

means a code skeleton of a secure system can be generated that preserves the important

semantics of the employed security patterns and their interrelations.

Each security design pattern can also be associated with the side effects of its adoption

on other quality properties, e.g. performance, usability. An impact model of the security

design patterns for each quality property can be built as discussed in [13]. Impact models

are useful for analysis of the trade-off among alternatives which leads to a thoughtful

decision on systematically selecting the right security design patterns for the job. On

the other hand, attack models can also be specified using SoSPa-MM. These attack

models are associated to the security concerns, and can be woven into the system model
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to generate misuse models for formal analysis of security, or generate test cases for

testing. In this chapter, we only focus on interrelations among security patterns, not

yet considering the relations to other quality properties and attack models. The types

of interrelations in this chapter are aligned with the five types of inter-pattern relations

presented in [239].

A second question is related to the completeness and extensibility of SoSPa. As previ-

ously discussed, the set of security patterns mentioned in this chapter is not yet exhaus-

tive. We have nonetheless considered the most illustrative for the purpose of our work.

However, an interesting feature of SoSPa is that it is fully extensible. As a result, if a

user realises that some details or some security patterns are missing, he can extend it.

This is eased by the use of RAM and the explicitness of the relationships among the

security patterns. More about SoSPa can be found in Appendix D.

In a final note, we recall that to the best of our knowledge, SoSPa is the first attempt

to provide an extensive set of concrete design models of security patterns that can be

integrated systematically. We provide RAM models that users can explore according to

several dimensions: not only from high to low level of details, but also in the variability

perspective traversing a large number of possible security solutions.

6.6 Related Work

There are other aspect-oriented security design methodologies for modelling security

aspects using patterns, and then weaving them into functional models. Georg et al. [85]

propose a methodology that allows not only security mechanisms but also attacks to be

modelled as aspect models. The attacks models can be composed with the primary model

of the application to obtain the misuse model. The authors then use the Alloy Analyser1

to reason about the misuse model and the security-treated model. Mouheb et al. [171]

develop a UML profile that allows specifying security mechanisms as aspect models.

The aspect models often go together with their integration specification to be woven

automatically into UML design models. Their approach allows security aspects to be

woven automatically into UML design models (class diagrams, state machine diagrams,

sequence diagrams, and activity diagrams) [171]. In [172], the authors present a full

security hardening approach, from design to implementation. Abramov et al. [1] propose

an MDS framework for integrating access control policies into database development.

At the pre-development stage, organisational policies are specified as security patterns.

Then, the specified security patterns guide the definition and implementation of the

security requirements which are defined as part of the data model. The database code

1http://alloy.mit.edu

http://alloy.mit.edu
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can be generated automatically after the correct implementation of the security patterns

has been verified at the design stage. Bouaziz et al. [46] introduce a security pattern

integration process for component-based models. With this process, security patterns

can be integrated in the whole development process, from UML component modelling

until aspect code generation. Recently, Horcas et al. [98] propose a hybrid AOSD

and MDE approach for automatically weaving a customised security model into the

base application model. By using the Common Variability Language (CVL) and atl,

different security concerns can be woven into the base application in an aspect-oriented

way, according to weaving patterns. However, dependencies between the security aspects

and their application orders have not been taken into account. In general, all these

approaches have not considered security aspects as a coherent system in which their

interrelations and constraints are taken into account.

As using cloud services provided by cloud providers is getting more popular, [163] re-

cently propose an enterprise security pattern for securing Software as a Service. The

security solution provided by the pattern can be driven by making design decisions whilst

performing the transformation between the solution models. Specifically, from a Com-

putation Independent Model (cim), different PIMs can be derived based on different

design decisions with security patterns. Those PIMs are transformed into PSMs which

are then transformed into Product Dependent Models pdms.

Shiroma et al. [213] propose an approach to leverage model transformations for specify-

ing and implementing application procedures of security patterns, including inter-pattern

dependencies. The inter-pattern dependencies here mean the order of consecutive ap-

plications of security patterns by performing consecutive transformations. The order is

specified by defining the output of the previous model transformation as a precondition

in the subsequent model transformation. In fact, the approach only presents the de-

pendencies in terms of the order of application of security patterns. There are many

other important interrelations that one must consider such as conflicts, benefits, and

alternatives among security patterns. Their approach is only able to deal with 8 per 27

security patterns in [211] because the other 19 patterns do not have structures described.

With SoSPa, we can address an extensive, extensible system of security patterns. All

key interrelations among security patterns are considered, not only the order of patterns

application.

Our MDS approach based on SoSPa initially explored in the position paper [181] is

inspired by [13]. Alam et al. [13] propose an approach based on RAM for designing

software with concern as the main unit of reuse. They show how their ideas can be

realised by using an example of low-level design concern, i.e. the Association concern.

The adoption of their approach to high-level concerns like security has not been dealt
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with yet. In this chapter, we realised the ideas in [181] by developing a system of RAM

models specifying multiple security patterns and their interrelations to form SoSPa.

We extend the concept of using variation interface in [13] for specifying the interrela-

tions among security patterns. Our work results in a unified System of Security design

Patterns. With SoSPa, for the first time, abstract security patterns can be specified, re-

fined as detailed designs with concrete semantics. Also for the first time, interrelations

among patterns can be concretely specified in the detailed designs, thanks to RAM.

Furthermore, we plan to extend the idea of using impact model in [13] for specifying the

constraints of security patterns with other quality properties like performance, usability.

6.7 Conclusions

This chapter has presented an MDS approach based on a System of Security design Pat-

terns to systematically guide and automate the application of multiple security patterns

in secure systems development. Our System of Security design Patterns is specified by

using an extended meta-model of RAM, namely SoSPa. Based on SoSPa, security

patterns are collected, specified as reusable aspect models to form a coherent system

of them. SoSPa is part of a full Model-Driven Software Development framework. Our

framework allows systematically selecting security design patterns, constructing security

solutions, and automatically composing them with a target system design. We evaluated

our approach by leveraging the System of Security design Patterns to design the security

of crisis management systems. The result shows that multiple security concerns of the

case study have been addressed. More importantly, the different security solutions are

thoughtfully selected and systematically integrated.
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This chapter concludes the thesis by summarising its main content in Section 7.1.1 and

revisiting its main objectives and contributions in Section 7.1.2. Finally, in Section 7.2

some directions for future work based on this thesis are suggested.

7.1 Conclusions

7.1.1 Summary

Software systems must be secure especially when we are living in a world that becoming

more and more digitalised. The digital world cannot be made secure by only enhancing

network security and other perimeter solutions, but essentially also by building better,

secure software systems [149]. Security software engineering is playing very important

role but in fact facing many tough challenges. These modern challenges could be solved

by introducing innovative, sound methodologies for engineering secure software systems.

MDS is the specialised MDE approach for engineering secure software systems. MDS

aims at proposing sound model-driven methodologies that could solve the challenges of

security software engineering for developing secure software systems. However, MDS is

not mature yet with some existing significant limitations and open issues. In this thesis,

three main current open issues in the state of the art of MDS research have been pointed

out from an extensive systematic review of MDS. The following open issues have been

addressed in this thesis: no systematic MDS engineering of multiple security concerns,

150
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the underuse of AOM in MDS, and the lack of tool chains for supporting a full MDS

development cycle. As a major outcome of this PhD work, our full MDS framework,

called MDS-MoRe, could enable MDS practitioners: 1) to address multiple security

concerns together systematically; 2) to leverage integrated MDS techniques in most of

the main stages of a development process: from modelling till testing; and 3) to enhance

the modularity and reusability with AOM and SOC in their MDS development process.

7.1.2 Revisited Contributions

This thesis proposes solutions to three main open issues in the current state of the art

of MDS research. We revisit the original contributions described in Chapter 1. The

contributions are explicitly used to answer all the research questions, i.e. RQ0, RQ1.1,

RQ1.2, RQ1.3, RQ2.1, RQ2.2, and RQ2.3.

In Chapter 3, the current state of the art of MDS research has been revealed by our

extensive systematic review. The results show that most MDS approaches focus on

authorisation and confidentiality while only few publications address further security

concerns like integrity, availability, and authentication. Moreover, security concerns are

often dealt with separately. Very few MDS approaches tackle multiple security concerns

systematically. Besides, most of the approaches try to separate security concerns from

core business logic, but only few weave security aspects into primary models. In our

review, we have identified five principal MDS studies which seem more mature than the

others. On the other hand, there are also other emerging/less common MDS approaches

that we have found out. Another important finding comes from the trend analysis on

the key artefacts of MDS over more than a decade. All these results have answered

the RQ0: What are the current limitations and open issues in the state of the art of

MDS research?, and given directions for our research work presented in the following

chapters, especially to tackle three of the main open issues of MDS research.

In Chapter 4, we show an overview of our two systematic MDS approaches for tack-

ling the three open issues above. The former focuses on tackling a specific, complex

security concern, i.e. access control management with advanced delegation features,

from domain-specific modelling, composing, implementing, and testing as presented in

Chapter 5. This could provide the basis for developing a tool chain for supporting mod-

elling, composing, implementing, and testing in an MDS development process. The

latter consists of a unified System of Security design Patterns for dealing with multiple

security concerns systematically. This work also focuses on promoting AOM in MDS

as presented in Chapter 6.
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In Chapter 5, a complete model-driven framework has been proposed to enable dy-

namic enforcement of delegation and access control policies that allows the automatic

configuration of the system according to the changes in delegation/access control rules.

Moreover, we have presented the use of mutation analysis to test the delegation policy

enforcement. Thus, our MDS framework has been proposed from modelling till testing

which could be the basis for developing a tool chain. The results of Chapter 5 can be

used to answer the RQ1.3: How to build a tool chain which is based on highly inte-

grated MDE techniques covering all the main stages of an MDS development cycle?

and RQ2.3: How can model-based security testing techniques be applied to facilitate the

validation of the resulting secure systems?

In Chapter 6, we have presented an MDS approach based on a System of Security de-

sign Patterns (SoSPa) to systematically guide and automate the application of multiple

security patterns in secure systems development. SoSPa is part of a full Model-Driven

Software Development framework. Our framework allows systematically selecting secu-

rity design patterns, constructing security solutions, and automatically composing them

with a target system design. Thus, Chapter 6 has addressed the RQ1.1: How to address

multiple security concerns more systematically?, RQ1.2: How to leverage AOM tech-

niques to better enhance separation-of-concern in the MDS development process?, and

RQ2.1: How can modelling techniques be used for specifying multiple security concerns?

In general, for answering the RQ2.2: How can model composition techniques be em-

ployed for composing the security models with the target system model?, we have shown

that ad-hoc model transformations can be used for composing models as presented in

Chapter 5. Moreover, in Chapter 6 we have shown that an existing model weaver like

RAM weaver can be used for composing models in the SoSPa approach.

7.2 Future Work

There are at least three main directions for future work based on three main contri-

butions of this thesis. First, an up-to-date extensive systematic review of MDS can

be conducted by inheriting the results of our review presented in Chapter 3. Second,

tool chains for supporting all the main stages of the MDS development methodologies

presented in Chapters 5 and 6 can be developed. Moreover, the two main methodologies

presented in parallel in Chapter 4 can be combined in a hybrid approach in which the

link between them is specified. Third, there are potential future work for extending the

work on SoSPa such as developing the impact models, the security attack patterns, and

the verification and validation methodologies.
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7.2.1 For An Up-to-date Systematic Review of MDS

Our SLR protocol and the list of finally selected MDS papers could be used as the

base for a follow-up SLR of MDS in the future. A reviewer would need to check again

the citation criterion for those primary MDS papers using up-to-date citation numbers

on Google Scholar. After obtaining a subset of MDS papers from the original set, a

forward snowballing on that subset should be conducted. Only forward snowballing is

required in this step because new, extra MDS papers will only be found in this way.

After reviewing and selecting a new set of MDS papers from the forward snowballing

step, the full snowballing process can be operated on the new set. The final newly found

MDS papers after snowballing will be included into the base subset to form a new final

set for data extraction, synthesis, and analysis.

7.2.2 For Developing MDS Tool Chains

An expected future work is developing complete MDS tool chain(s) based on the MDS-

MoRe framework. A tool chain would realise all the potential improvement for the

productivity and quality in engineering modern secure systems.

In Chapter 5, we have presented an MDS approach from modelling till testing. This

approach can provide the basis for developing a tool chain for supporting the model-

driven development of secure software systems. In our prototype, we have developed a

DSL for specifying complex delegation features in access control management. This is

the first but fundamental step to build a tool for supporting security officers to define

their delegation policies. In the next step, model transformations to transform and

integrate security policies to the target system model have been implemented in Kemerta,

where as code generation has been implemented using XPand. We have not built any

prototype yet for supporting the mutation testing approach but the main ideas are 1) a

tool for generating mutants based on mutation operators we proposed, and 2) another

tool for generating test cases from the security model.

One more point to add is that our work presented in Chapter 5 only focuses on the

delegation of rights. Further work could be dedicated to the delegation of obligations

and the support for usage control [206]. Usage control is called the next generation of

access control with more flexible access management mechanisms that we would adopt

our current approach for. We have not dealt with this idea yet but suggest it for future

work. Moreover, revocation mechanism in our current approach has not been completely

taken into account, i.e. without options of strong/weak revocation.
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In Chapter 6, we have mentioned our MDS process with three main stages: Security

threats identification & analysis; Security design patterns selection & application; and

Verification & validation of security patterns application. Another tool chain for sup-

porting all three main stages could be developed as well. The main part of Security

design patterns selection & application can be supported by RAM tool. We could ex-

tend the tool to support the selection of security design patterns based on the feature

model of SoSPa and the library of security design patterns in SoSPa. For the first stage

and second stage, tools support could be built based on the ideas for extending our work

in the next section.

7.2.3 For Extending SoSPa

Some suggestions for future work in this direction include developing the impact models,

making use of the security attack patterns, and integrating the verification and validation

methodologies for SoSPa.

The first foreseen future work can be extending the impact models in [13] for specifying

the side-effects of security patterns regarding other quality properties like performance,

usability. Another point is incorporating the attack models to generate misuse models

for formal analysis of security, or generating test cases for security testing. We could

leverage the formal analysis approach proposed by Georg et al. [85] where for some

security concerns, e.g. authentication, could be formally verified. For the security

concerns that leveraging formal analysis for verification is not yet a feasible solution,

we could adopt testing techniques. One direction could be a test-driven process for

validating security design patterns application. We may have some inspiration from the

approach proposed by Kobashi et al. [133] in which test templates could be introduced

into the security design patterns for later validation of their application.

7.2.4 Towards Realising The Full MDS-MoRe Approach

The two main methodologies presented in parallel in Chapter 4 can be combined in a

hybrid approach where the link between them is specified. The main idea is to use the

pattern-driven MDS approach in Chapter 6 for systematically tackling multiple security

concerns. Based on that, for some complex security concerns, the corresponding security

patterns could be extended/integrated with some DSLs to better specify the complexity

of security concerns, e.g. advanced delegation features. The most advanced form of

SoSPa could be a system of security patterns based on a system of DSLs in which each

security solution can be built on specific DSL (s). Of course, there is still much work to

do to realise this idea.
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An Informal Introduction to MDS

To promote research and present research activities being taken place in Luxembourg to

broad audience in Luxembourg’s society, many events such as LuxDoc1 Science Slam,

FNR2 Researchers’ Day, Pop-Up Science, Science Cafe have been organised annually. In

the context of LuxDoc Science Slam, Luxembourg Researchers’ Day, Pop-Up Science,

MDS and our work on the research project funded by FNR, namely MITER3, have been

presented to a broad audience in Luxembourg. The main idea of such events is to present

research activities in a creative, artistic way to attract a broad audience with different

backgrounds. It is challenging to introduce MDS in an interesting way to a broad

audience with different backgrounds. To address the challenge, MDS and our MITER

project have been presented in the form of a multilingual, scientific poem, namely “A

Multilingual, Scientific Poem on Model-Driven Security”. The poem is structured as

a classical scientific paper with four main sections: introduction, approach, evaluation,

and conclusion. In the poem, English is mainly used, but some words in Luxembourgish,

French, and German are also used to give some flavour of Luxembourg, a multilingual

country. Moreover, the poem should not be simply read, but sung in a Vietnamese

karaoke singing style! There are two main versions of the poem which are slightly

different in the first section and how it should be sung. The first version of this poem

won the second place at the LuxDoc Science Slam 20134. The second version of this

poem won the first place at the LuxDoc Science Slam 20145. The remainder of this

appendix consists of four main sections of the poem.

1www.luxdoc.org
2www.fnr.lu
3https://sites.google.com/site/jacqueskleinwebpage/grants/miter
4The full video of this event can be found here: https://www.youtube.com/watch?v=rBipinbHsyo
5A short interview in German: http://www.journal.lu/article/mit-karaoke-zum-sieg/
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A.1 Introduction

The more digital world6 in which we live, the more crucial IT security is becoming.

However, traditional methods for the development of secure systems are getting more

inefficient to ensure security [182]. Not many days pass without new headlines on the

newspapers about IT security vulnerabilities, security attacks, digital data leaks, and

so on [144]. In this context, Luxembourg with its significant banking industry (e.g.

CETREL7, SPUERKEESS8), e-government, and data centres has made IT security

an important task. On the other hand, the increasing complexity of systems, quickly

changing security threats, and time pressure all require an innovative sound methodology

for secure systems development (see9 Listing A.1).

1 S e c u r i t e ? Why to bother ?

I n t e r n e t banking ” tout l e monde” !

3 Smart phone i s now a ”must” .

Face−Goog know you that ’ s f o r sure ; )

5

Moien Letzebuerg , why Secherhect needed ?

7 What i f CETREL l o s t your i n f o ?

Credi t cards would have gone !

9 M i l l i o n s o f Euros to be l o s t

SPUERKEESS knows a l l the co s t

11 Better Secu r i ty Systems must be en fo rced !

13 Why not yet that s e cure ?

S e c u r i t e t h r e a t s change so quick

15 Bus iness requi rements change so quick

Time pre s su r e on the development proce s s

17 Time to c a l l f o r innovat ive sound methods

For Secure Systems to be developed

Listing A.1: Section “Introduction” of the poem

In the second version of this poem, the introduction section is slightly different and

should be sung differently (see10 Listing A.2).

Secur i ty ? Why to bother ?

2 I n t e r n e t banking ” tout l e monde” !

Smart phone i s now , l a l a la , a ”must” .

4 Face−Goog know you that ’ s f o r sure ; )

Amazon , eBay there you shop

6tout le monde=all over the world
7CETREL is a credit card company in Luxembourg
8SPUERKEESS, a.k.a. BCEE is the national bank of Luxembourg
9Lines 1-11 (except line 6) of Listing A.1 should be sung as the National Anthem (song) of Vietnam

“Tien Quan Ca”.
10Lines 1-14 of Listing A.2 should be sung as the Vietnamese traditional folk song “Beo dat may troi”.
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6 Cloud shouldn ’ t l e t you down . . .

8 Moien Letzebuerg , what to bother ?

Why Secherhect needed ?

10 What i f CETREL l o s t your in fo rmat ion ?

Credi t cards would have gone !

12 M i l l i o n s o f Euros to be l o s t

SPUERKEESS knows a l l the co s t

14 Secu r i ty must be en fo rced !

16 Why not yet that s e cure ?

S e c u r i t e t h r e a t s change so quick

18 Bus iness requi rements change so quick

Time pre s su r e on the development proce s s

20 Time to c a l l f o r innovat ive sound methods

For Secure Systems to be developed

Listing A.2: Section “Introduction” v2.0 of the poem

A.2 Approach

Model-Driven Engineering (MDE) has been considered by some researcher [38] as a so-

lution to the handling of complex and evolving software systems. As a specialisation of

MDE, Model-Driven Security (MDS) provides means to tackle the complexity, and in-

crease the productivity in modern secure systems development [190]. Roughly speaking,

security concerns of a system can be modelled by security experts using tailored Domain

Specific Languages. Separately is the business logic (base system) modelled by the sys-

tem designers. The security models and the system models can be composed together in

order to produce the secure system model [190]. The secure system model can then be

used for (partial) code generation, including (configured) security infrastructures [184].

Along the way of this process, model checking, simulation, and model-based security

testing techniques can be employed to verify and validate the resulting secure systems

[191]. Listing A.3 shows the core aspects of MDS approach11.

1 How about the MDS method?

Modeling the s e c u r i t y concerns f o r the good

3 By the hands o f the s e c u r i t y expe r t s

In a way that they must have understood

5 On the other hand , the bus in e s s l o g i c

Taken care by the bus ine s s modelers

11Lines 1-18 of Listing A.3 should be sung as the song “Mot coi di ve”. Lines 5-15 of Listing A.4
should be sung as “Noi vong tay lon”. For more information: http://en.wikipedia.org/w/index.php?
title=Trinh_Cong_Son

http://en.wikipedia.org/w/index.php?title=Trinh_Cong_Son
http://en.wikipedia.org/w/index.php?title=Trinh_Cong_Son
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7 Those to be auto−composed toge the r

Secure systems j u s t one−c l i c k f u r t h e r !

9

Model check ing and t e s t i n g to be l eve raged

11 Al l the s e c u r i t y concerns can be s imulated

To make sure the s e cure systems accompl ished !

13 For both s e c u r i t y concerns and bus ine s s l o g i c : )

15 What so good i s a l s o f o r the code

The language that computers l i k e the most !

17 Secure code i s generated at no co s t ; )

From the secure models that we got !

Listing A.3: Section “Approach” of the poem

A.3 Evaluation

In general, MDS has many values to become the most promising methodology for mod-

ern secure systems development. By leveraging model transformations and code gener-

ation, most of the development process can be automated which is very productive and

less error prone.

Moreover, model-based verification and validation techniques can be employed for en-

suring the correctness and security of the resulting systems. Some specific problem

areas such as smart-cards or cryptographic protocols are applicable for formal verifica-

tion methods. If formal verification is still unfeasible for larger systems due to increased

complexity and dependencies, we can apply (model-based) security testing. Listing A.4

addresses these points12.

Why MDS can be proved ?

2 such as a sound method

f o r the s e cure systems to be developed .

4

F i r s t , at no co s t to generate s e cure code .

6 Time pre s su r e does not need a thought .

Product iv i ty s u r e l y that we got .

8 New t h r e a t s can be d ea l t t i l l the source

Just some c l i c k s away from models to code

10

Second , q u a l i t y o f the product

12 would i t be s e cure and good?

Yes , o f course we can prove

14 That s ecure system models are good

By model check ing and t e s t i n g that we did

12Lines 18-21 of Listing A.4, and Listing A.5 should be sung as the kid song “Chiec den ong sao”
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16

And l a s t but not l e a s t ,

18 The MDS systems are adapt ive

Al l the new t h r e a t s to be d ea l t with

20 At run time they can be t r ea t ed !

And now we reach to the conc lu s i on .

Listing A.4: Section “Evaluation” of the poem

A.4 Conclusion

1 In the more d i g i t a l world that we l i v e

The more secure−systems we a l l need

3 MDS shows us what are grea t

For the s ecure systems to be f i t : )

Listing A.5: Section ”Conclusion” of the poem

This chapter has presented a multilingual, scientific poem on Model-Driven Security

(MDS). The poem is structured as a scientific paper with four main sections: introduc-

tion, approach, evaluation, and conclusion. The poem has shown us 1) why IT security

is getting more crucial (especially in Luxembourg); 2) how MDS could help building

secure IT systems; 3) what aspects show that MDS is indeed a sound method; and

finally 4) summary of those key points. Listing A.5 concludes that MDS can help to

build secure IT systems in the nowadays digital world. The main language used in the

poem is English, but some words in Luxembourgish, French, and German are also used

to give some flavour of Luxembourg, a multilingual country in where our research on

MDS has been being conducted. Moreover, the poem is not read but should be sung

in a Vietnamese karaoke singing style, including the rhythms of the National Anthem

(song) of Vietnam and three other Vietnamese songs!
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Advances in MDS: A Summary

This appendix summarises a book chapter where we describe and evaluate a set of repre-

sentative and influential Model-Driven Security approaches in the literature [144]. This

book chapter [144] and the systematic review presented in Chapter 3 can complement

well for each other. The former provides an in-depth analysis on some specific, rep-

resentative MDS approaches. The latter systematically presents a detailed overview

on the key artefacts of every MDS approach and the whole MDS research so far. In

this appendix, a short overview of the book chapter and its main conclusions are given.

Readers can find more details in [144].

B.1 Overview

The book chapter is organised with the following main sections. First, a set of char-

acteristics of MDS is identified and described in order to form a taxonomy for further

evaluation of MDS approaches. Then, we evaluate a few selected MDS approaches

against our taxonomy. The discussion section provides a table comparing the evaluated

approaches, and discusses some open issues and validity threats for MDS. Finally, the

related work is addressed and potential challenges for MDS are raised to conclude the

chapter.

In order to propose a clear vision of what is MDS, we first introduced the main con-

cepts on which MDS is based on. In particular, we focused on the notions of MDE,

such as metamodels, model transformations, etc, but also on the notion of separation of

concerns or separation of views. We have then proposed a detailed taxonomy consisting

of the main concepts and elements of MDS. Based on our taxonomy we have described,

160
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summarised, evaluated and discussed five well-known MDS approaches: UMLsec, Se-

cureUML, Sectet, ModelSec and SecureMDD. We pointed out some current lim-

itations of MDS approaches, and sketched some relevant open issues. Overall, this

chapter provides a broad view of the field and is intended as an introduction to MDS

for students, researchers or practitioners.

B.2 Main Conclusions

This work allows us to provide insights about future directions for MDS research and in-

dustrial practice. A primary challenge is to reach a better level of maturity: this of course

requires building tools, but also conducting more systematic industrial experimentation.

The latter is obviously difficult in such a critical software application domain. However,

recent progress in MDE in theories and tooling, as well as the continuous interest from

industry in modelling, may directly be of benefit to the development of MDS.

We noticed that most of the existing MDS approaches implement separation of security

concerns from the business logic (SOC), even if for the approaches we surveyed this

principle cannot be considered as following the AOM paradigm. By leveraging AOM,

security concerns can be specified as aspect models that can be woven into the pri-

mary (business logic) models. The AOM paradigm could thus be used to enhance the

modularity of the security-critical systems and the reusability of the security models.

MDS has to deal with the business complexity, but also with the additional complexity

of security concerns which are multiple in nature. An intuitive solution to this variety

is for the software development methodology to reflect the heterogeneous nature of such

systems with the goal of making their design simpler. From our evaluation we can de-

duce that it is difficult to develop a general-purpose DSL intended to model all security

concerns simultaneously. This is because different security properties may require dif-

ferent interactions with the business models that are too complex to be modelled by a

human using a single DSL. For easing the modelling task and allowing better verification

possibilities, an interesting possibility is that each security concern is modelled using a

specifically tailored DSL.

However, spreading security concerns over several models raises several crucial challenges

in our opinion: First, it hinders the understanding of the overall system’s security by the

experts since they need to deal with several models simultaneously. This drawback can

however be balanced by the narrowed focus of those models. Second, it requires powerful

composition operators for creating models that amalgamate all security aspects. This

is crucial for later phases: whereas separate security models make it possible to analyse
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security properties independently, the enforcement of those policies in the business part

of the systems and code generation requires merging all security aspects before reaching

platform code. Third, it complicates keeping all security models synchronised over com-

mon information and poses additional challenges when tracking integrated verification

results back to security information that is distributed over several models.

Towards addressing some of the challenges above, in Chapter 6 we propose an MDS

approach based on a unified System of Security design Patterns that can support sys-

tematically dealing with multiple security concerns simultaneously.
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OSGi and Kevoree

C.1 OSGi (Equinox) as the target Adaptive Execution Plat-

form

As shown in Figure 5.10, once we obtain the security-enforced architecture model from

the previous steps, we have to reflect this security enforcement in the running system.

In case we use Equinox1 as the target execution platform, all components (business

logic components and proxy components) are implemented as OSGi bundles (Spring

Dynamic Modules) [202]. In OSGi service platforms, there are two ways to declare and

bind services via interfaces (ports): declaring/binding exported services in Spring osgi-

context.xml files, or in the source code by overriding the method start of BundleActivator

class of OSGi bundle. Here we show the code for the sake of simplicity but in practice,

the declaration of services and bindings can be configured in XML files which means no

need to recompile code to change the bindings. Once the services are made available,

they can be called from other services. For example, the code snippet in Listing C.1

shows how the deleteBorrowerAccountService of a proxy component of Role Director

is bound to the exported service reference of the deleteBorrowerAccountService of the

BorrowerAccountResource proxy component (lines 1-8). The lines 12-20 show that this

Role Director can also access to consultPersonnelAccount of PersonnelAccountResource.

Se rv i c eRe f e r ence [ ] refIdeleteBorrowerAccount DIRECTOR = bundleContext .

g e t S e r v i c e R e f e r e n c e s (

2 lms . proxy . i n t e r f a c e s . Ide leteBorrowerAccount . c l a s s

. getName ( ) , ” ( host=BorrowerAccountResource ) ” ) ;

4 lms . proxy . i n t e r f a c e s . Ide leteBorrowerAccount

serverIdeleteBorrowerAccount DIRECTOR = ( lms . proxy . i n t e r f a c e s .

Ide leteBorrowerAccount ) bundleContext

1http://www.eclipse.org/equinox/
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. g e t S e r v i c e ( refIdeleteBorrowerAccount DIRECTOR [ 0 ] ) ;

6

myDIRECTORService

8 . s e tde l e t eBorrowerAccountServ i ce (

serverIdeleteBorrowerAccount DIRECTOR ) ;

10 . . .

12 Se rv i c eRe f e r ence [ ] refIconsultPersonnelAccount DIRECTOR = bundleContext .

g e t S e r v i c e R e f e r e n c e s (

lms . proxy . i n t e r f a c e s . I consu l tPersonne lAccount . c l a s s

14 . getName ( ) , ” ( host=PersonnelAccountResource ) ” ) ;

lms . proxy . i n t e r f a c e s . I consu l tPersonne lAccount

serverIconsultPersonnelAccount DIRECTOR = ( lms . proxy . i n t e r f a c e s .

I consu l tPersonne lAccount ) bundleContext

16 . g e t S e r v i c e ( refIconsultPersonnelAccount DIRECTOR [ 0 ] ) ;

18 myDIRECTORService

. s e t consu l tPer sonne lAccountSe rv i c e (

serverIconsultPersonnelAccount DIRECTOR ) ;

Listing C.1: Services and Bindings in the Director proxy component

As we mentioned before, all the proxy components are very light-weight components.

Every method of proxy components only contains the redirecting call to another service

that (directly/indirectly) calls to the real method in the business logic. The code snip-

pet in Listing C.2 shows that a call to the deleteBorrowerAccount method (line 1) of a

proxy component of Role Director actually is redirected to call the deleteBorrowerAc-

count method (line 3) of the BorrowerAccountResource proxy component that already

was made available previously (lines 1-8, Listing C.1). Similarly, the consultPerson-

nelAccount method (line 7) contains a call to the consultPersonnelAccount method (line

10) of the PersonnelAccountResource proxy component that already was made available

previously (lines 12-20, Listing C.1).

1 pub l i c void deleteBorrowerAccount (

lms . bo . user . BorrowerAccount borrowerAccount ) throws BSException {
3 de leteBorrowerAccountServ ice . deleteBorrowerAccount ( borrowerAccount ) ;

}
5 . . .

7 pub l i c lms . bo . user . PersonnelAccount consultPersonne lAccount (

lms . bo . user . User per sonne l ) throws BSException {
9 return consu l tPer sonne lAccountServ i ce

. consultPersonne lAccount ( per sonne l ) ;

11 }

Listing C.2: Redirecting the method calls in the Director proxy component
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Figure C.1: Bob is delegated by Bill 5 permissions, e.g. consult personnel account

The adaptation process is directed by a generated reconfiguration script that is specific

for Equinox adaptive execution platform. The reconfiguration script is executed in

order to reflect the change of the policy from the model level to the running system,

e.g. a new delegation rule is active. Figure C.1 shows a new delegation rule has been

enforced in the running system so that Bob (Secretary) is delegated the permission to

consult personnel account by Bill (Director). This means after enforcing this delegation

rule, there exists a connection from the port consultPersonnelAccount of the User proxy

component Bob, via corresponding Role and Resource proxy components, to the real

method consultPersonnelAccount in the business logic.

C.2 Kevoree as the target Adaptive Execution Platform

In case we use Kevoree as the target execution platform, all components (business logic

components and proxy components) are implemented as Kevoree component instances

[80]. The adaptation process is driven by a generated reconfiguration Kevoree script.

The Kevoree script orchestrates the adaptation process of the running system by adding,

removing component instances, binding the service ports between proxy components. An

example of the configuration of proxy components (the 3-layer architecture) is shown in

Figure 5.8. In order to explain how the proxy components are implemented, let’s take a

look at the Director Role proxy component. This Role proxy component is representa-

tive as it is between the User layer and the Resource layer (Figure 5.8). It can be seen
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that this Director Role proxy component provides the ports (services) to the User proxy

components and also requires the ports (services) of the Resource proxy components.

The code snippet in Listing C.3 shows the ports required and provided by the Direc-

tor Role proxy component. The required ports are bound to the corresponding ports

provided by the BorrowerAccountResource proxy component and the PersonnelAccoun-

tResource proxy component. The provided ports are to be bound by the ports required

by the corresponding User proxy components.

Once the corresponding User proxy component calls the service provided by the port

“deleteBorrowerAccountIn” (line 8, Listing C.3), the method deleteBorrowerAccount

(line 3, Listing C.4) in the Director Role proxy component is executed that in turn calls

the service provided by the port “deleteBorrowerAccountOut” (line 5, Listing C.4. In

fact this port is provided by the BorrowerAccountResource proxy component that finally

calls to the corresponding method of deleteBorrowerAccount in the business logic code.

1 @Requires ({
@RequiredPort (name=” deleteBorrowerAccountOut ” , type = PortType .

SERVICE, className = IDeleteBorrowerAccount . c l a s s , op t i ona l = true ) ,

3 @RequiredPort (name = ” consultPersonnelAccountOut ” , type = PortType .

SERVICE, className = Iconsu l tPersonne lAccount . c l a s s , op t i ona l = true ) ,

. . .

5 })

7 @Provides ({
@ProvidedPort (name=” deleteBorrowerAccountIn ” , type = PortType .

SERVICE, className =

9 IDeleteBorrowerAccount . c l a s s ) ,

@ProvidedPort (name = ” consu l tPersonne lAccountIn ” , type = PortType .

SERVICE, className = Iconsu l tPersonne lAccount . c l a s s ) ,

11 . . .

})

Listing C.3: The ports required and provided by the Director Role proxy component

@Override

2 @Port (name = ” deleteBorrowerAccountIn ” , method = ” deleteBorrowerAccount ” )

pub l i c void deleteBorrowerAccount ( BorrowerAccount borrowerAccount ) throws

BSException {
4

IDeleteBorrowerAccount deleteBorrowerAccountPort = getPortByName ( ”

deleteBorrowerAccountOut ” , IDeleteBorrowerAccount . c l a s s ) ;

6

deleteBorrowerAccountPort . deleteBorrowerAccount ( borrowerAccount ) ;

8 }

Listing C.4: Redirecting the method call in the Director Role proxy component in

Kevoree
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There are three main advantages of using Kevoree over OSGi as the execution platform.

Firstly, all we need to provide for the platform is the Kevoree reconfiguration script say-

ing how to adapt the system. The Kevoree execution platform takes care of the necessary

adaptation order for the running system according to changes. In case of using OSGi,

we have to take care of the adaptation order manually. Secondly, the model@runtime

environment of Kevoree makes it easier for implementing our model driven framework.

In Kevoree, we can use the Kevoree framework itself to manage the security policy mod-

els. Thirdly, the way of declaring ports and bindings in Kevoree are very close to the

concepts of ports and bindings described in our 3-layer architecture (Figure 5.8). This

makes it very convenient to implement the running systems in Kevoree.
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More of SoSPa

In this part, we present the RAM models of some more aspects that are mostly based

on the patterns in [211, 72, 220].

D.1 More Patterns for Authentication, Authorisation

Fig. D.1 shows a simple Password aspect. The Password aspect defines how user

password is created and managed. This aspect can be reused, e.g. in the DirectAu-

thentication pattern, to check if the password used for login is matched with the correct

password managed by the system (using compare method).

As shown in Fig. D.2, before looking up for active permissions of the request subject,

the policy decision point (PDP) gets information of the subject (e.g. the roles of the

subjects) and other information about the resource (e.g. conflict-of-interests) and en-

vironment (e.g. time-bound context, or location-based context). The lookup method

will access the PolicyRepository to retrieve all the active permissions according to the

subject, the resource, and the environment. The PDP then evaluates all the data and

comes up with a final decision for the request.

Fig. D.3 shows how the policy(s) are managed by the PolicyRepository.

D.2 More Patterns for Auditing

Fig. D.4 shows how a SecureLogger can use a LogManager to take care of the actual

logging. In fact, the LogManager gets an instance of Logger to delegate the logging

168
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aspect Password
structural view

message view compare

c: |Caller cp: Password

compare()

Pointcut Advice

c: |Caller cp: Password

compare(Password 2check)

password: String

r := equals(pwd)

+ void create(String password)
~ String getPassword()
~ void setPassword(String password)
~ boolean compare(Password pass2check)

Password

r

+ boolean equals(Object arg0)

<<impl>>
String

message view changePassword

c: |Caller pm: 
PasswordManager

changePassword()

Pointcut Advice

c: |Caller

pm: 
PasswordManager

changePassword(UserID p, String newPassword)

vc: |Credential

setPassword(newPassword)

+ void changePassword(UserID p, String newPassword)

PasswordManager

password
1

<<impl>>
Object

 
UserID

2check: Password

pwd = getPassword()

vc := getCredential(p)

userID
1

Figure D.1: Aspect Password

action. These are based on the Secure Logger, Audit Interceptor patterns [220], and the

Security Logger and Auditor pattern [72].
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structural view

aspect PolicyBasedAC depends on PolicyRepository |PolicyRepositoryPEP
|Subject

+ void getSubjectInfo()
+ void getResourceInfo()
+ void getEnvirontmentInfo()

 
|PIP

PDP
structural view

+ resolveConflict()
 

DynamicPolicy
ConflictResolver

|ProtectedClass

+ void set()

- |Method accessType
- |Class object 

AccessRequest

+ |PermissionsCollection |lookup(|Subject sbj, AccessRequest req)
 

|PolicyRepository

|PermissionsCollection

message view lookup Pointcut

c: Caller a: |PolicyRepository

|lookup()

Binding
 c → *

 Caller → *

Advice

s: |PDP

PolicyRepository

|lookup()

r := combineDecisions()

info: |PIP

getSubjectInfo()

getResourceInfo()

getEnvirontmentInfo()

message view combineDecisions

s: |PDP

r := combineDecisions()

Pointcut Advice s: |PDP

r := combineDecisions()

DynamicPolicy
ConflictResolver

resolveConflict()

message view getSubjectInfo

s: |PDP info: |PIP

getSubjectInfo()

s: |PDP info: |PIP

getSubjectInfo()

m: |SessionManager

ses := lookupSession(sid)

|Session |SessionId

ses

PolicyRepository instantiation
|PolicyRepository → |PolicyRepository

Op: |getApplicablePolicy → lookup

Figure D.2: Aspect PolicyBasedAC
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aspect PolicyRepository depends on ZeroToMany |PolicyRepository
|Policy

addRule()
removeRule()
modifyRule()
definePolicy()
removePolicy()
modifyPolicy()
addPolicySet()
removePolicySet()
modifyPolicySet()

Policy
AdministrationPoint

+ |Policy |getApplicablePolicy()
 

|PolicyRepository

 
PolicyComponent

structural view

+ void combineRules()
 

|Policy

+ void combinePolicies()
 

PolicySet

+ void ()

subjectDescriptor
objectDescriptor
environmentDescriptor
accessType
isPositive

PolicyRule

+ void resolveConflicts()
 

StaticPolicy
ConflictResolver

message view getApplicablePolicy

ZeroToManyAssociation instantiation
|Data→ |PolicyRepository

|Associated → PolicyComponent

ZeroToManyAssociation instantiation
|Data→ PolicySet

|Associated → PolicyComponent

ZeroToManyAssociation instantiation
|Data→ Policy

|Associated → PolicyRule

Figure D.3: Aspect PolicyRepository
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structural view

aspect LogManager
|LogManager
|LogFactory

|LogMessage
|Logger

structural view

+ void set()

+ void log(|LogMessage msg)
+ |LogMessage readLog()

|LogManager

message view log Pointcut

caller: 
|SecureLogger

logMan: 
|LogManager

log(|LogMessage msg)

Binding
 caller → *
 Caller → *

Advice

f: 
|LogFactory

logger := getLogger()

~ |Logger getLogger()
 

|LogFactory

logger:
|Logger

+ void log(|LogMessage msg)
- void |write(|LogMessage msg)

|Logger

 

|LogMessage

log(msg)

log(msg)

|SecureLogger

caller: 
|SecureLogger

logMan: 
|LogManager

|write(msg)

Figure D.4: Aspect LogManager



www.manaraa.com

Appendix E

List of Publications, Services,

Grants, and Awards

E.1 Publications included in the thesis

• Phu Hong Nguyen, Jacques Klein, Yves Le Traon, and Max E. Kramer.“A

Systematic Review of Model-Driven Security.” In Software Engineering Conference

(APSEC, 2013 20th Asia-Pacific, vol. 1, pp. 432-441. IEEE, 2013. [182]

• Phu Hong Nguyen, Max E. Kramer, Jacques Klein, and Yves Le Traon. “An

Extensive Systematic Review on the Model-Driven Development of Secure Sys-

tems.” In Information and Software Technology, 2015. [183]

• Levi Lucio, Qin Zhang, Phu Hong Nguyen, Moussa Amrani, Jacques Klein,

Hans Vangheluwe, and Yves Le Traon. “Advances in Model-Driven Security.”

Advances in Computers 93 (2014): 103-152. [144]

• Phu Hong Nguyen, Gregory Nain, Jacques Klein, Tejeddine Mouelhi, and Yves

Le Traon. “Model-driven adaptive delegation.” In Proceedings of the 12th an-

nual international conference on Aspect-oriented software development, pp. 61-72.

ACM, 2013. (one of the best papers) [190]

• Phu Hong Nguyen, Gregory Nain, Jacques Klein, Tejeddine Mouelhi, and Yves

Le Traon. “Modularity and Dynamic Adaptation of Flexibly Secure Systems:

Model-Driven Adaptive Delegation in Access Control Management.” In Transac-

tions on Aspect-Oriented Software Development XI, pp. 109-144. Springer Berlin

Heidelberg, 2014. [184]

173

http://www.researchgate.net/profile/Phu_Nguyen4/publication/259716212_A_Systematic_Review_of_Model-Driven_Security/links/00b7d531992bc10277000000.pdf
http://www.researchgate.net/profile/Phu_Nguyen4/publication/259716212_A_Systematic_Review_of_Model-Driven_Security/links/00b7d531992bc10277000000.pdf
https://www.researchgate.net/publication/281373234_An_Extensive_Systematic_Review_on_the_Model-Driven_Development_of_Secure_Systems
https://www.researchgate.net/publication/281373234_An_Extensive_Systematic_Review_on_the_Model-Driven_Development_of_Secure_Systems
https://www.researchgate.net/publication/281373234_An_Extensive_Systematic_Review_on_the_Model-Driven_Development_of_Secure_Systems
http://www.researchgate.net/profile/Phu_Nguyen4/publication/261361604_Advances_in_Model-Driven_Security/links/00463533ff60060506000000.pdf
http://hdl.handle.net/10993/350
http://hdl.handle.net/10993/16611
http://hdl.handle.net/10993/16611


www.manaraa.com

Appendix E. List of Publications, Services, Grants, and Awards 174

• Phu Hong Nguyen, Mike Papadakis, and Iram Rubab. “Testing Delegation

Policy Enforcement via Mutation Analysis.” In Software Testing, Verification and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on,

pp. 34-42. IEEE, 2013. [191]

• Phu Hong Nguyen, Jacques Klein, and Yves Le Traon. “Model-Driven Security

with A System of Aspect-Oriented Security Design Patterns.” In 2nd Workshop on

View-Based, Aspect-Oriented and Orthographic Software Modelling. 2014. [181]

• Phu Hong Nguyen, Koen Yskout, Thomas Heyman, Jacques Klein, Riccardo

Scandariato, and Yves Le Traon. “SoSPa: A System of Security Design Patterns

for Systematically Engineering Secure Systems.” In ACM/IEEE 18th International

Conference on Model Driven Engineering Languages and Systems. 2015. [185]

E.2 Other publications/presentations

• Phu Hong Nguyen, Jacques Klein, and Yves Le Traon. “Model-Driven Security

with Modularity and Reusability for Secure Systems Development.” In STAF-DS.

2015. [187]

• Phu Hong Nguyen, Koen Yskout, Thomas Heyman, Jacques Klein, Riccardo

Scandariato, and Yves Le Traon. “Model-Driven Security based on A Unified Sys-

tem of Security Design Patterns.”, Technical Report, University of Luxembourg,

2015. [186].

• Phu Hong Nguyen, Jacques Klein, and Yves Le Traon. “Modeling, composing,

and testing of security concerns in a Model-Driven Security approach.” Interna-

tional Symposium on Engineering Secure Software and Systems-Doctoral Sympo-

sium. 2014. [189]

• P. H. Nguyen, J. Klein, G. Nain, and Y. Le Traon, “Migrating Legacy Secure

Systems to Model-Driven Adaptive Secure Systems”, a position paper (2 pages)

presented at the 11th edition of the BElgian-NEtherlands software eVOLution

symposium (BENEVOL 2012) held at the Delft University of Technology, The

Netherlands, 2012.

• van Amstel, Marcel F., Mark GJ van den Brand, and Phu H. Nguyen. “Met-

rics for model transformations”. In Proceedings of the Ninth Belgian-Netherlands

Software Evolution Workshop (BENEVOL 2010), Lille, France (December 2010).

2010. [17]

http://www.researchgate.net/profile/Phu_Nguyen4/publication/259716198_Testing_Delegation_Policy_Enforcement_via_Mutation_Analysis/links/00463531992f76157e000000.pdf
http://www.researchgate.net/profile/Phu_Nguyen4/publication/259716198_Testing_Delegation_Policy_Enforcement_via_Mutation_Analysis/links/00463531992f76157e000000.pdf
http://www.researchgate.net/profile/Phu_Nguyen4/publication/263596703_Model-Driven_Security_with_A_System_of_Aspect-Oriented_Security_Design_Patterns/links/0a85e53b56c735ecb3000000.pdf
http://www.researchgate.net/profile/Phu_Nguyen4/publication/263596703_Model-Driven_Security_with_A_System_of_Aspect-Oriented_Security_Design_Patterns/links/0a85e53b56c735ecb3000000.pdf
https://www.researchgate.net/publication/280876452_SoSPa_A_System_of_Security_Design_Patterns_for_Systematically_Engineering_Secure_Systems
https://www.researchgate.net/publication/280876452_SoSPa_A_System_of_Security_Design_Patterns_for_Systematically_Engineering_Secure_Systems
https://publications.uni.lu/bitstream/10993/17104/1/STAF2014-DS-PhuNGUYEN.pdf
https://publications.uni.lu/bitstream/10993/17104/1/STAF2014-DS-PhuNGUYEN.pdf
http://hdl.handle.net/10993/21090
http://hdl.handle.net/10993/21090
http://hdl.handle.net/10993/16420
http://hdl.handle.net/10993/16420
http://swerl.tudelft.nl/bin/view/Main/Benevol2012Program
http://swerl.tudelft.nl/bin/view/Main/Benevol2012Program
http://static.tue.nl/fileadmin/content/faculteiten/win/SET_Meetings_-_Slides/2010/15122010_Amstel.pdf
http://static.tue.nl/fileadmin/content/faculteiten/win/SET_Meetings_-_Slides/2010/15122010_Amstel.pdf


www.manaraa.com

Appendix E. List of Publications, Services, Grants, and Awards 175

• P.H. Nguyen, Quantitative Analysis of Model Transformations. Master’s thesis,

Eindhoven University of Technology, Eindhoven, The Netherlands (2010) [188].

E.3 Awards/Grants

• Huygens Talent Scholarship: Full scholarship provided by the Minister for Edu-

cation, Culture and Science of the Netherlands to the most talented international

students, for studying the 2-year Master programme at the Eindhoven University

of Technology, 2008-2010 (total value > 40kEUR).

• A full grant by the NATO Academic of Science for participating in the summer

school Marktoberdorf 2014 on Dependable Software Systems Engineering.

• A full grant (EUR 2000) by the National Research Fund (FNR), Luxembourg for

participating in the summer school SFM12:MDE, 2012.

• Registration and accommodation grant for participating in the Summer School on

Software Synthesis (ExCAPE) held at UC Berkeley, in June 2013.

• Full grants for participating in the International Summer Schools on Training And

Research On Testing (TAROT) 2012, 2013. Travel grants AOSD2013, ESSoS2014.

• Certificate for exceptional contributions, support, and commitment in the organi-

sation of the Sixth IEEE International Conference on Software Testing, Verification

and Validation (ICST 2013).

• Japan-ASEAN University Network Scholarship, 2007.

• Award for displaying exceptional personal dedication, teamwork and contribution

to the ibm.com project, 2007.

• Won the first prize at the LuxDoc Science Slam 2014 in Luxembourg for presenting

my scientific, multilingual poem on Model-Driven Security .

E.4 Professional, Teaching, and Social Activities

• An external reviewer for the following journal(s)/conference(s)/workshop(s): IN-

FSOF, ISEB, QRS 2015, COMPSAC 2015, QSIC 2014, SAM 2014, VAO 2014,

ICWS 2014, ICSE-NIER 2014, MODELS 2013, ISARCS 2013, AOSD 2013, SAC-

SVT 2013, QSIC 2013, Modevva 2012, toolseurope 2012, ICST 2012.

http://alexandria.tue.nl/extra1/afstversl/wsk-i/nguyen2010.pdf


www.manaraa.com

Appendix E. List of Publications, Services, Grants, and Awards 176

• A webmaster, a student volunteer, and the main photographer for the ICST 2013

in Luxembourg, http://www.icst.lu, 2013.

• A member of IEEE, ACM, 2013-Present.

• A representative of students (at the Faculte des Sciences, de la Technologie et de la

Communication) in the University Council, University of Luxembourg, 2013-2015.

• An active (committee) member of the organisation of young researchers in Lux-

embourg, LuxDoc (http://www.LuxDoc.org), 2013-2015.

• The vice chair representative of the SnT PhD Student Association, 2013-2015.

• A member of Huygens Talent Circle, 2008-Present.

• A member of Toastmasters International, 2013-Present.

• A lecturer at the FPT University, Vietnam, 2011.

• A teaching assistant at the University of Luxembourg, 2011-2015.

E.5 Certificates for Personal Development Skills

So far I have taken the trainings in the following personal development skills, mainly

provided by the University of Luxembourg.

• Presentation Skills for Scientific Conferences.

• Leading and Planning.

• Good Scientific Practice.

• Introduction to Entrepreneurship and Entrepreneurial Behaviour.

• Lecturing and Teaching.

• Time and Self-Management.

• Proposal Writing for Young Researchers.

• Project Management.

• Media Interview Training.

• Poster Presentation.

• Developing Intercultural Skills and Communication in Multilingual Context.

• Scientific Writing.

http://www.icst.lu
http://www.icst.lu
http://www.ieee.org
http://www.acm.org
http://wwwen.uni.lu/fstc
http://wwwen.uni.lu/fstc
http://www.LuxDoc.org
http://www.LuxDoc.org
http://www.securityandtrust.lu
http://www.hutac.com
https://www.toastmasters.org
http://international.fpt.edu.vn
http://www.uni.lu


www.manaraa.com

Bibliography

[1] J. Abramov, O. Anson, M. Dahan, P. Shoval, and A. Sturm. “A methodology for

integrating access control policies within database development”. In: Computers

& Security 31.3 (2012), pp. 299–314.

[2] J. Abramov, O. Anson, A. Sturm, and P. Shoval. “Tool support for enforcing

security policies on databases”. In: Conference on Advanced Information Systems

Engineering (2012), pp. 126–141.

[3] J. Abramov, A. Sturm, and P. Shoval. “Evaluation of the Pattern-based method

for Secure Development (PbSD): A controlled experiment”. In: Information and

Software Technology 54.9 (2012), pp. 1029–1043.

[4] T. Ahmed and A. R. Tripathi. “Static verification of security requirements in

role based CSCW systems”. In: SACMAT 03: Proceedings of the eighth ACM

symposium on Access control models and technologies (2003), pp. 196–203.

[5] G.-J. Ahn, B. Mohan, and S.-P. Hong. “Towards Secure Information Sharing

using Role-Based Delegation”. In: J. Netw. Comput. Appl. 30.1 (2007), pp. 42–

59.

[6] G. Ahn and H. Hu. “Towards realizing a formal RBAC model in real systems”.

In: Proceedings of the 12th ACM symposium on Access control models and tech-

nologies (2007), p. 215.
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[131] J. Klein, F. Fleurey, and J. Jézéquel. “Weaving Multiple Aspects in Sequence Di-

agrams”. In: Transactions on Aspect-Oriented Software Development (TAOSD).

Vol. 4620. Lecture Notes in Computer Science. Springer-Verlag, 2007, pp. 167–

199.

[132] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley, 2003.

[133] T. Kobashi, N. Yoshioka, T. Okubo, H. Kaiya, H. Washizaki, and Y. Fukazawa.

“Validating Security Design Patterns Application Using Model Testing”. In: Avail-

ability, Reliability and Security (ARES), 2013 Eighth International Conference

on. IEEE. 2013, pp. 62–71.

[134] M. E. Kramer, J. Klein, J. R. Steel, B. Morin, J. Kienzle, O. Barais, and J.
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oriented meta-languages”. In: International Conference on Model Driven Engi-

neering Languages and Systems (MoDELS), LNCS 3713. Springer, 2005, pp. 264–

278.

[178] S. Na and S. Cheon. “Role delegation in role-based access control”. In: Proceed-

ings of the fifth ACM workshop on Role-based access control. RBAC ’00. Berlin,

Germany: ACM, 2000, pp. 39–44.

[179] Y. Nakamura and M. Tatsubori. “Model-driven security based on a web services

security architecture”. In: Services Computing, 2005 IEEE International Confer-

ence on (2005).

[180] R. Neisse and J. Doerr. “Model-based specification and refinement of usage con-

trol policies”. In: 2013 Eleventh Annual Conference on Privacy, Security and

Trust (2013), pp. 169–176.

[181] P. H. Nguyen, J. Klein, and Y. Le Traon. “Model-Driven Security with A System

of Aspect-Oriented Security Design Patterns”. In: Proceedings of the 2Nd Work-

shop on View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO

’14. York, United Kingdom: ACM, 2014, 51:51–51:54.

[182] P. H. Nguyen, J. Klein, Y. Le Traon, and M. E. Kramer. “A Systematic Review

of Model-Driven Security”. In: Software Engineering Conference (APSEC, 2013)

20th Asia-Pacific. Vol. 1. IEEE. 2013, pp. 432–441.

[183] P. H. Nguyen, M. E. Kramer, J. Klein, and Y. Le Traon. “An Extensive System-

atic Review on the Model-Driven Development of Secure Systems”. In: Informa-

tion & Software Technology 68 (2015), pp. 62–81.

[184] P. H. Nguyen, G. Nain, J. Klein, T. Mouelhi, and Y. Le Traon. “Modularity

and Dynamic Adaptation of Flexibly Secure Systems: Model-Driven Adaptive

Delegation in Access Control Management”. In: Transactions on Aspect-Oriented

Software Development XI. Springer, 2014, pp. 109–144.



www.manaraa.com

Bibliography 193

[185] P. H. Nguyen, K. Yskout, T. Heyman, J. Klein, R. Scandariato, and Y. Le Traon.

“SoSPa: A System of Security Design Patterns for Systematically Engineering Se-

cure Systems”. In: International Conference on Model Driven Engineering Lan-

guages and Systems. MODELS ’15. Ottawa, Canada, 2015.

[186] P. H. Nguyen. “Model-Driven Security based on A Unified System of Security

Design Patterns”. In: (2015).

[187] P. H. Nguyen. “Model-Driven Security with Modularity and Reusability for Se-

cure Systems Development”. In: STAF-DS 2014. 2014.

[188] P. H. Nguyen. “Quantitative Analysis of Model Transformations”. MA thesis.

Eindhoven University of Technology, 2010.

[189] P. H. Nguyen, J. Klein, and Y. Le Traon. “Modeling, composing, and testing of

security concerns in a Model-Driven Security approach”. In: International Sym-

posium on Engineering Secure Software and Systems-Doctoral Symposium. 2014.

[190] P. H. Nguyen, G. Nain, J. Klein, T. Mouelhi, and Y. Le Traon. “Model-Driven

Adaptive Delegation”. In: Proceedings of the 12th annual International Confer-

ence on Aspect-Oriented Software Development. Modularity:AOSD ’13. Fukuoka,

Japan: ACM, 2013, pp. 61–72.

[191] P. H. Nguyen, M. Papadakis, and I. Rubab. “Testing Delegation Policy Enforce-

ment via Mutation Analsysis”. In: Proceedings of the Workshop on Mutation

Testing @ the Sixth IEEE International Conference on Software Testing. ICST’13.

Luxembourg, Luxembourg: IEEE, 2013, pp. 61–72.

[192] E. R. O’connell. Automated password reset. US Patent 5,991,882. 1999.

[193] J. Offutt. “A mutation carol: Past, present and future”. In: Information & Soft-

ware Technology 53.10 (2011), pp. 1098–1107.

[194] M. Papadakis and N. Malevris. “Automatically performing weak mutation with

the aid of symbolic execution, concolic testing and search-based testing”. In:

Software Quality Journal 19.4 (2011), pp. 691–723.

[195] M. Papadakis and N. Malevris. “Mutation based test case generation via a path

selection strategy”. In: Information & Software Technology 54.9 (2012), pp. 915–

932.

[196] M. Papadakis and Y. L. Traon. “Using Mutants to Locate ”Unknown” Faults”.

In: ICST. 2012, pp. 691–700.

[197] T. J. Parr and R. W. Quong. “ANTLR: A predicated-LL (k) parser generator”.

In: Software: Practice and Experience 25.7 (1995), pp. 789–810.



www.manaraa.com

Bibliography 194

[198] J. Pavlich-Mariscal, S. Demurjian, and L. Michel. “A framework of composable

access control features: Preserving separation of access control concerns from

models to code”. In: Computers & Security 29.3 (2010), pp. 350–379.

[199] R. Prieto-Diaz. “Status report: Software reusability”. In: software, IEEE 10.3

(1993), pp. 61–66.

[200] I. Ray, R. France, N. Li, and G. Georg. “An aspect-based approach to modeling

access control concerns”. In: Information and Software Technology 46.9 (2004),

pp. 575–587.

[201] E. Rodriguez. “Security Design Patterns”. In: ACSAC’03. 2003.

[202] D. Rubio. Pro Spring dynamic modules for OSGi service platforms. 2009.
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